目录
一 简介
数据结构是一种在计算机中组织和存储数据的方式,它不仅关注数据本身,更强调数据元素之间的关系与操作。通过定义逻辑结构(如线性、树状、图形等)和物理结构(如顺序存储、链式存储等),数据结构有效地管理和优化数据的访问、插入、删除等操作,为算法设计和高效程序实现奠定基础。
二 为什么有数据结构
数据结构的概念之所以被提出,主要是出于以下几个关键原因:
-
优化存储和检索效率: 不同的数据结构提供了不同的方法来组织和存储数据,每种结构都具有特定的访问、插入和删除操作的特点,这些特点会影响数据操作的效率。例如,数组可以快速访问指定索引的元素,而链表则擅长在中间位置插入和删除元素。
-
抽象复杂关系: 数据结构能够帮助抽象和表达数据元素之间的复杂关系,如层次关系(树)、关联关系(图)等。这对于处理现实世界中的复杂数据集非常必要,例如文件系统的目录结构可以用树形数据结构表示,社交网络的关系可以用图数据结构建模。
-
支撑高效算法: 许多高效的算法都是建立在特定数据结构的基础上。例如,二叉搜索树结构支撑了快速查找、插入和删除操作,而堆数据结构则用于高效实现优先队列和堆排序算法。
-
提高程序性能和可读性: 选择合适的数据结构可以使程序运行更快,同时也让代码更容易理解和维护。数据结构的选择直接影响了程序的时间复杂度和空间复杂度,进而影响程序的整体性能。
-
适应软件工程需求: 在软件开发中,合理使用数据结构可以更好地满足系统设计的要求,如数据持久化、并发处理、缓存管理等,这些都是现代软件系统不可或缺的部分。
因此,提出数据结构的概念是为了更好地组织、管理和操作数据,以便于设计出更加高效、灵活和可维护的计算机程序。
三 三要素
数据结构的三要素主要包括:
-
逻辑结构(Logical Structure):
- 这是数据元素之间的逻辑关系,描述数据在概念层面如何相互关联。逻辑结构不涉及数据在计算机内存中的具体存储形式。逻辑结构通常分为线性结构(如线性表、栈、队列)、树形结构(如二叉树、AVL树)、图形结构(如图)以及集合结构等。
-
存储结构(Physical or Internal Structure):
- 又称为物理结构,它是指数据结构在计算机存储器中的具体实现形式。存储结构直接影响数据元素的存储布局以及访问、修改数据的效率。常见的存储结构有顺序存储结构(如数组)、链式存储结构(如链表)、索引存储结构(如稀疏矩阵的索引表)以及哈希存储结构(如哈希表)等。
-
数据的运算(Operations or Algorithms):
- 数据结构中定义的一组操作或算法,这些操作针对逻辑结构定义,并在存储结构上实现。它们决定了如何在数据结构上进行插入、删除、查找、更新等基本操作,以及可能的其他复杂操作。运算的设计和实现必须与数据结构的逻辑和存储结构相适应,以确保算法的高效性和正确性。
这三个要素共同构成了数据结构的核心内容,它们紧密联系、相互作用,共同决定了数据结构的特性和应用价值。在设计和实现数据结构时,需要综合考虑这三个方面,以满足特定应用场景下的性能需求和功能要求。
四 逻辑结构
数据结构的存储结构,又称物理结构或内部结构,是指数据结构在计算机内存中具体实现的方式。存储结构决定了数据元素在内存中的存储布局和组织方式,以及对数据元素进行访问和操作的效率。根据数据元素之间的逻辑关系以及如何在内存中存储这些关系,存储结构主要有以下几种:
-
顺序存储结构(Sequential Storage): 数据元素在内存中按照某种线性顺序连续存放,如数组。数组通过元素的索引可以直接定位到对应的内存地址,因此支持随机访问,查找和修改速度快。然而,插入和删除操作通常会导致大量元素的移动,效率较低,特别是当元素位于数组中间时。
-
链式存储结构(Linked Storage): 数据元素在内存中可以是不连续存放的,每个元素包含一个指向下一个元素的指针,如链表。链表根据指针连接数据元素,插入和删除操作只需改变相关节点的指针即可,效率较高。但链式存储不支持随机访问,访问某元素通常需要从头节点开始逐个遍历。
-
索引存储结构(Indexed Storage): 在索引存储结构中,除了存储数据元素本身之外,还有一张索引表,索引表中记录了数据元素的地址或其他相关信息。例如,稀疏矩阵的压缩存储就可以采用索引表+值表的形式,大大减少了存储空间。索引存储便于快速定位数据,但需要额外的空间存储索引。
-
散列存储结构(Hashed Storage): 散列表(Hash Table)是一种通过散列函数将数据映射到数组的一个位置,从而实现快速查找的数据结构。散列存储能够在理想情况下达到近乎常数时间的查找效率,但可能需要解决冲突问题。此外,散列存储也不支持顺序访问,除非额外维护有序链表或其他附加结构。
-
堆存储结构(Heap Storage): 在堆这种特殊的树形结构中,数据元素存储在一个数组中,数组下标与树的层级结构有关联。堆主要用于实现优先队列,其插入、删除操作有一定规则,且可以保持堆属性。
-
树形存储结构(Tree Storage): 树形结构在内存中可以按照层次关系存储,如二叉树、多叉树等。节点通常包含指向其子节点的指针,可以根据树的性质采用不同的存储方式,如顺序存储(数组实现)或链式存储(节点包含指针实现)。
-
图存储结构(Graph Storage): 图的存储结构有两种常见形式:邻接矩阵和邻接表。邻接矩阵通过二维数组表示图中节点间的连接关系;邻接表则采用一维数组(节点列表)和多个链表(每条链表代表节点的邻接节点)相结合的方式存储图的拓扑结构。
存储结构的选择不仅影响数据结构的操作效率,还决定了空间利用率。在设计和实现数据结构时,需要根据实际应用场景和需求来选择最适合的存储结构。
五 存储结构
数据结构的存储结构,又称物理结构或内部结构,是指数据结构在计算机内存中具体实现的方式。存储结构决定了数据元素在内存中的存储布局和组织方式,以及对数据元素进行访问和操作的效率。根据数据元素之间的逻辑关系以及如何在内存中存储这些关系,存储结构主要有以下几种:
-
顺序存储结构(Sequential Storage): 数据元素在内存中按照某种线性顺序连续存放,如数组。数组通过元素的索引可以直接定位到对应的内存地址,因此支持随机访问,查找和修改速度快。然而,插入和删除操作通常会导致大量元素的移动,效率较低,特别是当元素位于数组中间时。
-
链式存储结构(Linked Storage): 数据元素在内存中可以是不连续存放的,每个元素包含一个指向下一个元素的指针,如链表。链表根据指针连接数据元素,插入和删除操作只需改变相关节点的指针即可,效率较高。但链式存储不支持随机访问,访问某元素通常需要从头节点开始逐个遍历。
-
索引存储结构(Indexed Storage): 在索引存储结构中,除了存储数据元素本身之外,还有一张索引表,索引表中记录了数据元素的地址或其他相关信息。例如,稀疏矩阵的压缩存储就可以采用索引表+值表的形式,大大减少了存储空间。索引存储便于快速定位数据,但需要额外的空间存储索引。
-
散列存储结构(Hashed Storage): 散列表(Hash Table)是一种通过散列函数将数据映射到数组的一个位置,从而实现快速查找的数据结构。散列存储能够在理想情况下达到近乎常数时间的查找效率,但可能需要解决冲突问题。此外,散列存储也不支持顺序访问,除非额外维护有序链表或其他附加结构。
-
堆存储结构(Heap Storage): 在堆这种特殊的树形结构中,数据元素存储在一个数组中,数组下标与树的层级结构有关联。堆主要用于实现优先队列,其插入、删除操作有一定规则,且可以保持堆属性。
-
树形存储结构(Tree Storage): 树形结构在内存中可以按照层次关系存储,如二叉树、多叉树等。节点通常包含指向其子节点的指针,可以根据树的性质采用不同的存储方式,如顺序存储(数组实现)或链式存储(节点包含指针实现)。
-
图存储结构(Graph Storage): 图的存储结构有两种常见形式:邻接矩阵和邻接表。邻接矩阵通过二维数组表示图中节点间的连接关系;邻接表则采用一维数组(节点列表)和多个链表(每条链表代表节点的邻接节点)相结合的方式存储图的拓扑结构。
存储结构的选择不仅影响数据结构的操作效率,还决定了空间利用率。在设计和实现数据结构时,需要根据实际应用场景和需求来选择最适合的存储结构。
六 数据运算
数据结构的运算,也被称为数据结构的操作或算法,是指针对特定数据结构设计的一系列操作指令,用于在该结构上进行数据的添加、删除、查找、更新等操作。这些运算的设计和实现直接关系到数据结构的功能完善程度和执行效率。下面列举了一些常见的数据结构及其相应的基本运算:
-
线性结构(如数组、链表):
- 插入(Insertion):在指定位置或末尾添加新的数据元素。
- 删除(Deletion):从指定位置或依据特定条件移除数据元素。
- 查找(Search):根据给定的值或条件查找数据元素,返回其存在的位置或直接获取元素。
- 更新(Update):更改已存在数据元素的值。
- 遍历(Traversal):按照某种顺序访问所有数据元素。
-
树形结构(如二叉树、B树、AVL树等):
- 插入(Insertion):在树的适当位置添加新的节点。
- 删除(Deletion):从树中移除一个节点,并保持树的完整性(如平衡性)。
- 查找(Search):在树中查找给定值的节点。
- 前序遍历(Preorder Traversal)、中序遍历(Inorder Traversal)、**后序遍历(Postorder Traversal)**等遍历操作。
- 层次遍历(Level Order Traversal):按照树的层级顺序遍历所有节点。
- 旋转(Rotation):在平衡树中调整节点位置以保持平衡。
-
图结构(如无向图、有向图、加权图等):
- 添加节点(Add Vertex):向图中加入新的节点。
- 添加边(Add Edge):在图中两个节点之间添加连接边。
- 删除节点(Delete Vertex):从图中移除节点及其关联的边。
- 删除边(Delete Edge):移除图中指定的边。
- 深度优先搜索(Depth First Search, DFS):沿着路径尽可能深地探索图。
- 广度优先搜索(Breadth First Search, BFS):从起点出发,逐层向外扩张搜索整个图。
- 最短路径查找(Shortest Path Algorithms):如Dijkstra算法、Bellman-Ford算法、Floyd-Warshall算法等,用于寻找两点之间的最短路径。
-
集合与映射结构(如集合、哈希表):
- 插入(Insertion):将元素添加到集合或映射中。
- 删除(Deletion):从集合或映射中移除元素。
- 查找(Search):检查元素是否存在于集合中,或者在映射中查找键对应的值。
- 成员测试(Membership Test):确认一个元素是否属于集合。
- 哈希函数(Hash Function):将元素转化为哈希表中的索引。
每种数据结构特有的运算设计都是为了最大程度地发挥该结构的优势,如优化查找效率、维持特定属性(如树的平衡性)等。在实际应用中,选择正确的数据结构和设计高效的运算算法至关重要。