C语言经典算法之零钱兑换问题

目录

前言

A.建议

B.简介

一 代码实现

二 时空复杂度

A.时间复杂度(Time Complexity):

B.空间复杂度(Space Complexity):

C.总结:

三 优缺点

A.优点:

B.缺点:

C.总结:

四 现实中的应用


前言

A.建议

1.学习算法最重要的是理解算法的每一步,而不是记住算法。

2.建议读者学习算法的时候,自己手动一步一步地运行算法。

B.简介

在计算机编程中,零钱兑换问题通常是一个经典的动态规划问题,但这里我会以简化的方式来介绍如何使用C语言来解决这一问题。假设我们有一个数组代表各种面额的硬币(如[1, 5, 10, 25]),目标是要找出最少数量的硬币来凑够某个特定金额(如37元)。

一 代码实现

#include <stdio.h>

// 假设coin数组是预先给定的硬币面额
int coins[] = {1, 5, 10, 25};
int amount; // 目标金额

// 使用动态规划解决零钱兑换问题
int coinChange(int n, int* coins, int m) {
    int dp[n+1]; // 初始化一个大小为n+1的数组dp,dp[i]表示凑齐i元所需的最小硬币数,初始化为无穷大
    for (int i = 0; i <= n; i++) {
        dp[i] = INT_MAX;
    }
    
    // 基础情况
    dp[0] = 0; // 0元不需要任何硬币
    
    // 动态规划循环
    for (int i = 1; i <= n; i++) { // 针对每个金额i
        for (int j = 0; j < m; j++) { // 遍历每种硬币面额
            if (coins[j] <= i) { // 如果当前硬币面额小于等于目标金额
                dp[i] = min(dp[i], dp[i-coins[j]] + 1); // 更新dp[i]为原值与前一个状态加上当前硬币数目的较小值
            }
        }
    }

    return dp[n] == INT_MAX ? -1 : dp[n]; // 若dp[n]仍为最大整数,则表示无法凑齐目标金额,返回-1;否则返回最少硬币数目
}

int main() {
    amount = 37; // 设置目标金额为37元
    int m = sizeof(coins)/sizeof(coins[0]); // 计算硬币种类数
    printf("Minimum number of coins required to make change for %d is: %d\n", amount, coinChange(amount, coins, m));
    return 0;
}

请注意,上述代码片段中min函数未定义,需要自行补充。在实际编程中,您可以使用<limits.h>库中的INT_MIN替换INT_MAX,并在代码中添加自定义的最小值查找函数。

另外,此问题仅适用于确定有解的情况,若无解,则返回-1。实际问题可能需要做更多的边界条件检查和优化。

二 时空复杂度

零钱兑换问题的时间复杂度和空间复杂度分析如下:

A.时间复杂度(Time Complexity):

这个问题通常采用动态规划方法解决,其中涉及到两个嵌套循环。外层循环对应目标金额,内层循环遍历所有的硬币面额。因此,时间复杂度通常表示为O(n*m),其中n为目标金额,m为硬币种类数。

例如,在上面提供的C语言代码示例中,时间复杂度就是O(amount * m),因为我们需要对每个金额i以及每种硬币进行一次判断。

B.空间复杂度(Space Complexity):

在动态规划解决方案中,我们需要创建一个大小为n+1的数组(其中n为目标金额)来存储子问题的最优解。所以空间复杂度为O(n)。

在上述C语言代码中,dp数组的大小即为n+1,所以空间复杂度为O(amount)。

C.总结:

总结一下,零钱兑换问题的时间复杂度通常是O(n*m),空间复杂度为O(n),这在目标金额较大或者硬币种类较多的情况下可能造成较高的计算资源消耗,需要根据实际情况寻找可能的优化方案。例如,可以通过剪枝或其他优化算法降低时间复杂度。

三 优缺点

零钱兑换问题(Coin Change Problem)是一种典型的动态规划问题,它的目的是找到用最少数量的硬币凑够指定金额的方法。以下是该问题的一些优缺点:

A.优点:

  1. 解决方案具有明确性:通过动态规划方法可以得到确切的最少硬币数量,结果易于理解和解释。
  2. 通用性强:该算法适用于多种货币系统,只要给出不同的硬币面额和目标金额就能求解。
  3. 优化效果明显:对于小规模的问题实例,可以迅速得出最优解,避免穷举所有可能性带来的计算开销。

B.缺点:

  1. 时间复杂度较高:在最坏情况下,时间复杂度为O(n*m),其中n为目标金额,m为硬币种类数。这意味着随着目标金额和硬币种类数的增长,计算时间显著增加,可能导致效率低下。
  2. 空间复杂度较大:需要额外的空间存储动态规划表格,对于大规模问题可能会占用较大的内存。
  3. 对于无限供应的硬币问题,存在无解的情况,需要额外处理边界条件。
  4. 对于实际应用场景,可能存在硬币有限制供应的情况,此时问题会变得更加复杂,常规的动态规划算法可能需要进一步改造才能解决。

C.总结:

总的来说,零钱兑换问题的经典动态规划解决方案在处理小到中等规模问题时表现良好,但对于大数据量场景可能需要进行优化或采用其他算法。同时,还需要关注实际应用中的附加限制条件,以确保算法的有效性和实用性。

四 现实中的应用

零钱兑换问题在现实生活中有许多实际应用,主要体现在以下几个方面:

  1. 收银找零:在零售行业,收银员在收取客户付款后需要找零时,就需要快速找到最少数量的硬币或纸币组合来凑足客户的找零金额,这就是零钱兑换问题的一个典型应用场景。

  2. 自动售货机:自动售货机在找零环节也需要解决这个问题,机器内部需要有一套算法来计算如何利用有限的硬币库存以最小数量的硬币来完成找零操作。

  3. ATM机:银行自动取款机在用户取款时也会遇到类似问题,特别是在用户希望取出特定金额现金,而ATM机需要根据其内部储存的钞票面额计算如何最佳分配现金。

  4. 数字货币交易:在数字货币交易中,由于存在多种面额的代币,为了精确支付某一特定数额的数字货币,也需要通过某种算法找到最优的代币组合。

  5. 电信计费系统:在电话卡充值或通话费用计算中,系统也可能需要将用户账户余额转换成特定的通话分钟数,这就涉及到了零钱兑换的概念。

  6. 资源分配优化:在更广义的场景下,零钱兑换问题的原理还可应用于其他领域的资源分配问题,如物流配送中的货物装载优化,只需要将“硬币”换成“货物单元”,“面额”换成“货物体积或重量”。

综上所述,零钱兑换问题的解决方案不仅在日常生活中广泛存在,也在众多技术和商业应用中扮演着重要角色,有助于提高服务效率和客户满意度。

  • 23
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 9
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JJJ69

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值