下游任务使用预训练模型的两种模式:特征集成FeatureEnsemble和微调Fine-tuning

ELMO:采用Feature Ensemble
输入句子 输入到ELMO预训练好的双层bi-LSTM
embedding 动态调整以适应下游任务(作为下游任务的输入)
侧重于单词的上下文特征表达
GPT和BERT使用Fine-tuning
用手头任务的部分训练数据,直接在预训练模型上训练,修正模型的参数

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值