《美丽的数学》读后感

《美丽的数学》 读后感

读完《美丽的数学》一书,我不禁感叹,南外推荐的书真好。

这里,我希望通过三个例子解释这本书的厉害所在。

质数的数量——反证法

2 , 3 , 5 , 7 , … 2, 3, 5, 7, \dots 2,3,5,7,,这是小学时学到的质数

但是,谁曾想过,质数有几个?

早在几千年前,伟大的欧几里得想出了证明。(以下过程不严谨,只是简略说明)

他先假设有有限个质数,设为集合 S S S
∏ x ∈ S x \displaystyle{\prod_{x\in S} x} xSx 也为有限整数,设其为 y y y
y + 1 y+1 y+1 都不能被这些质数整除,所以 y + 1 y+1 y+1 也为质数,矛盾,得证。

当问题很难证明时,可以假设相反的结论,一步步推导,直到矛盾。

反证法思想光芒无处不在

归并排序——分治法

n n n 个数从小到大排序,该怎么排?

为了方便,我们将 i i i 数列的第 i i i 个数记为 a i a_i ai

一般,我们会想到把最小的 a i a_i ai 先排到最前,删去,再将第二小的排到后面,依次往复。

这就是选择排序

对于 n n n 个数,我们需要找到最小的数需要 n n n 次计算。
所以,选择排序需要 n 2 n^2 n2 次比较,记为该算法的时间复杂度 O ( n 2 ) O(n^2) O(n2)
当然,因为各种原因,运算次数总会在 n 2 n^2 n2 前乘上一个常数或加上一个较小的数。
事实上,将这些数输入到电脑里(即使是全自动的)也要时间。

普通电脑一秒可以做 2 × 1 0 8 2\times10^8 2×108 (即两亿,我的电脑一秒跑 1.9 × 1 0 8 1.9\times 10^8 1.9×108 次)次运算,当 n n n 超过 2 × 1 0 4 2\times 10^4 2×104 ,即两万时,就比较慢了。

如何变快?

考虑到一个结论:单个元素总是有序的,这是最简单的情况。

所以,我们可不可以这样:将所需要排序的区间(即要从哪个点到哪个点排序)每次缩小一半,直到只剩一个数要排

我们假定缩小的两半都已排好序,记为 X X X Y Y Y,每次像选择排序一样依次取最小值。

通过简单的比较,我们知道,每次取出的最小值只能为 X 1 X_1 X1 或者 Y 1 Y_1 Y1

所以,在 X 1 X_1 X1 Y 1 Y_1 Y1 中去更小的,放入答案序列中,删去该元素原来的位置,依次计算。

最后,其中一个序列会剩下一些元素,因为有序,所以直接全部放进去。

每次将问题分解成更小的问题,叫做分治
分治的英文名叫做 Divide and conquer,分(Divide)而治(Conquer)之。

《美丽的数学》中还举了一个例子:分形。这里一种分形的前几步。

图片
这是一个自相似图形,图中自己和自己的三个角长得一样,只是大小不同。

要得到该图形的前 k k k 步,我们可以分治解决。

f ( x , y , z ) f(x,y,z) f(x,y,z) ( x , y ) (x,y) (x,y) 为最上角的 z z z 步的分形图案。

f ( x , y , z ) f(x,y,z) f(x,y,z) 可以分解为以下三个子问题:

上面的角,为 f ( x , y , z − 1 ) f(x,y,z-1) f(x,y,z1)
左下的角,为 f ( f( f( 左下坐标 , z − 1 ) ,z-1) ,z1)
右下的角,为 f ( f( f( 右下坐标 , z − 1 ) ,z-1) ,z1)

思考:如何求出左下、右下的顶点坐标?

书中给出了更巧妙的办法。
将杨辉三角(帕斯卡三角)中所有的奇数全部涂黑。
如何证明?分治

之前,我们的老师讲过一个巧妙的比喻:国家主席下达命令,一层一层下达,最后到达百姓手中。
这是什么?分治

分治思想光芒无处不在。

几何还是图论?——图论建模

大家应该知道凸多面体的著名公式。

V − E + F = 2 V-E+F=2 VE+F=2

,其中 V V V 为顶点数, E E E 为边数, F F F 为面数。

该如何证明呢?

这是一个正方体。为了去重,我们已经删去了最底下的面,其它所有边都在图上。

正方体

现在我们对它进行略微调整:

在这里插入图片描述
可以发现,只要边相同,图是等价的,因为这是一个。(我不知道 这里 的图量词用张还是个)

图的本质就是顶点集合和连接它们的边集

有可能各位还不明白,但是这样,问题就迎刃而解。

下面定义被高度简化,可能不准确。

我们定义连通图为图上点能互相到达的图。
我们定义一个子图为点集的子集(不一定是真子集)和连接这些点的边集的子集(同样)。
我们定义为一个环上点连接的环上边的个数都恰好为 2 2 2 的子图。

我们定义(注意这里名词是我造的)圈为在图上一个环上点除了环的边以外互不直接相连的环。

以上看不懂就只用知道一句话:圈就是里面没有东西的圈。

如何计算面的总数?面的总数就是图中边的总数 × 2 \times 2 ×2 2 E 2E 2E),还是圈的个数 + 1 +1 +1。可以发现,两个圈共用一条边
如何计算边的总数?它就是原来图上边的总数,也是 E E E
如何计算顶点的总数?它就是图上顶点的总数,也是 V V V

接着,我们开始删边,删到这个图只要再删边就不连通为止。
显然,一个 n n n 个顶点的图满足以上条件时有且只有 n − 1 n - 1 n1 条边,在数学里,我们称它为

在删边的过程中,圈的个数依次减少 1 1 1(共用的两个圈毁掉了,但是又生成了一个,也就是合并了)。

所以删掉 E − ( V − 1 ) E-(V-1) E(V1) 条边, 也就是 E − V + 1 E-V+1 EV+1 条边后,边数从 F − 1 F-1 F1 0 0 0

所以 E − V + 1 = F − 1 E-V+1=F-1 EV+1=F1,也就是 E − V − F = − 2 E-V-F=-2 EVF=2,也就是 V − E + F = 2 V-E+F=2 VE+F=2

得证。

这就是图论的精华所在——将不是图的东西转化为图。

图可以做到的还有很多。

图可以表示一个状态(比如走迷宫时,到了哪个点)能到达哪些状态。
这就是给两个状态加了一条单向边

图可以表示优先级。
对于每组元素 u > v u>v u>v,就将 u u u v v v 之间加一条单向边。
所形成的图叫做 DAG,即有向无环图。
思考:为什么不能有环?尝试反证。

图基本上涉及到各个领域。

图论建模精神无处不在


综上所述,数学之美无处不在

得证。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值