目录
因为堆在逻辑上是一个完全二叉树,所以首先需要先了解树的概念,再理解二叉树以及完全二叉树
一、树
1.树的概念及结构:
a.树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。
b.有一个特殊的结点,称为根结点,根节点没有前驱结点。
c.除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i<= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
d.因此,树是递归定义的。
注意:树形结构中,子树之间不能有交集,否则就不是树形结构
2.树的一些相关概念:
a.节点的度:一个节点含有的子树的个数称为该节点的度
b.叶节点或终端节点:度为0的节点称为叶节点
c.非终端节点或分支节点:度不为0的节点
d.双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点
e.孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点
f.兄弟节点:具有相同父节点的节点互称为兄弟节点
g.树的度:一棵树中,最大的节点的度称为树的度
h.节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推
i.树的高度或深度:树中节点的最大层次
j.堂兄弟节点:双亲在同一层的节点互为堂兄弟
k.节点的祖先:从根到该节点所经分支上的所有节点
l.子孙:以某节点为根的子树中任一节点都称为该节点的子孙
m.森林:由m(m>0)棵互不相交的树的集合称为森林
二、二叉树
1.概念:一棵二叉树是结点的一个有限集合,该集合:
a. 或者为空
b. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成
从上图可以看出:
1. 二叉树不存在度大于2的结点
2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
注意:对于任意的二叉树都是由以下几种情况复合而成的:
2.特殊的二叉树:
1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是 ,则它就是满二叉树。
2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
3.二叉树的顺序结构:
普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。
4.二叉树的性质:
1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有 个结点.
2. 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是 .
3. 对任何一棵二叉树, 如果度为0其叶结点个数为n0 , 度为2的分支结点个数为n2,则有n0 =n2 +1
4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h=log(n+1)
5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:
a. 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
b. 若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子
c. 若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子
三、堆的结构及代码实现
1.堆的概念及结构:
a.如果有一个关键码的集合K = { , , ,…, },把它的所有元素按完全二叉树的顺序存储方式存储在一个一维数组中,并满足: <= 且 <= ( >= 且 >= ) i = 0,1,2…,则称为小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。
b.堆的性质:
堆中某个节点的值总是不大于或不小于其父节点的值;
堆总是一棵完全二叉树。
2.堆的代码实现:
前面已经分析了,堆是一种完全二叉树,存储结构上所以可以将元素采用顺序存储方式存取在一个一维数组中,再通过逻辑结构使其构成堆的结构
typedef int HPDataType;
typedef struct Heap
{
HPDataType* a;
size_t size;
size_t capacity;
}HP;
与前面定义顺序表结构体类似,定义一个动态开辟的数组,size用来控制数据的插入与删除以及用来判断堆是否满了,capacity用来记录堆的容量
堆的实现最重要的就是插入之后的向上调整和删除数据之后的向下调整
因为在实现这两个向上调整和向下调整函数时多次交换两个数组元素,为了方便使用将交换数据算法封装成了一个函数,如下:
void Swap(HPDataType* pa, HPDataType* pb)
{
HPDataType tmp = *pa;
*pa = *pb;
*pb = tmp;
}
a.堆的构建
void HeapInit(HP* php)
{
assert(php);
php->a = NULL;
php->size = php->capacity = 0;
}
b.堆的销毁
void HeapDestory(HP* php)
{
assert(php);
free(php->a);
php->a = NULL;
php->capacity = php->size = 0;
}
c.堆的插入
首先需要分析一下,堆是在数组结构中实现的,插入数据也就是插入到数组中去,插入到数组头或者中间其他位置都需要挪动数据;再深入分析,再插入任何一个其他数据前,原数组是具有堆的结构的,如果随意插入就会改变各个节点之间的关系,从而使原来具有堆结构的数组变的混乱不再满足堆结构;所以为了避免上述问题,将数据插入到数组尾,然后再依次向上调整。过程如下:
若插入数据结构依旧满足堆结构则不动,否则按照上图画出的这个线路依次向上调整
重点:向上调整算法
首先需要通过孩子节点下标找到父亲节点下标,孩子节点下标减一之后再除以二就是父亲节点下标;当孩子节点数据小于父亲节点数据时,就需要交换孩子节点和父亲节点对应的数据,然后再向上走:将父亲下标赋值给孩子节点下标,然后再用相同算法计算父亲节点;当孩子节点数据不小于父亲节点数据,说明已经符合了堆的结构,就break跳出循环;若一直向上调整,没有跳出循环就需要控制循环结束条件,通过上面的过程图可以看出,当child等于0时循环结束
这里实现的是小堆,若需实现大堆只需改变判断交换条件即可
void AdjustUp(HPDataType* a, size_t child)
{
size_t parent = (child - 1) / 2;
while (child > 0)
{
if (a[child] < a[parent])
{
Swap(&a[child], &a[parent]);
child = parent;
parent = (child - 1) / 2;
}
else
{
break;
}
}
}
插入数据过程:
插入过程前面部分就是正常的像动态数组尾插数据操作,最后调用向上调整函数调整堆结构
void HeapPush(HP* php, HPDataType x)
{
assert(php);
if (php->size == php->capacity)
{
size_t newCapacity = php->capacity == 0 ? 4 : php->capacity * 2;
HPDataType* tmp = realloc(php->a, sizeof(HPDataType) * newCapacity);
if (tmp == NULL)
{
printf("realloc fail\n");
exit(-1);
}
php->a = tmp;
php->capacity = newCapacity;
}
php->a[php->size] = x;
++php->size;
AdjustUp(php->a, php->size - 1);
}
d.堆的删除
删除堆是删除堆顶的数据,将堆顶的数据跟最后一个数据交换,然后删除数组最后一个数据,再进行向下调整算法。
重点:向下调整算法
从堆顶开始,一开始先让堆顶节点作为父节点,然后向下找到两个孩子节点,比较两个孩子节点,若小的孩子节点数据小于父节点则将小的孩子节点和父节点数据进行交换,否则跳出循环;未跳出循环则继续向下调整,重复上述过程,当child等于size时循环结束
这里实现的是小堆,若要实现大堆则需要改变两孩子节点数据的判断条件和小的孩子节点与父节点的判断条件
void AdjustDown(HPDataType* a, size_t size, size_t root)
{
size_t parent = root;
size_t child = parent*2 + 1;
while (child < size)
{
if (child + 1 < size && a[child + 1] < a[child])
{
child++;
}
if (a[child] < a[parent])
{
Swap(&a[child], &a[parent]);
parent = child;
child = parent * 2 + 1;
}
else
{
break;
}
}
}
需要先断言判断堆中元素个数是否大于0;然后再将堆顶数据和最后一个数据交换,再删除数组最后一个数据(将size--即可),最后调用向下调整函数调整堆结构
void HeapPop(HP* php)
{
assert(php);
assert((php->size) > 0);
Swap(&php->a[0], &php->a[php->size - 1]);
php->size--;
AdjustDown(php->a, php->size, 0);
}
e.取出堆顶数据
HPDataType HeapTop(HP* php)
{
assert(php);
assert(php->size > 0);
return php->a[0];
}
f.堆的数据个数
size_t HeapSize(HP* php)
{
assert(php);
return php->size;
}
g.堆的判空
bool HeapEmpty(HP* php)
{
assert(php);
return php->size == 0;
}