习题 1
1.无监督学习的两个主要任务是(多选)(BD)。
A.回归 B.降维 C.分类 D.聚类
2.下列对无监督学习描述错误的是©。
A.无标签 B.核心是聚类
C.不需要降维 D.具有很好的可解释性
3.下列对有监督学习描述错误的是(D)
A.有标签 B.核心是分类
C.分类原因不透明 D.所有数据都相互独立分布
4.在以下学习策略中,使用的训练数据只有部分存在标签的
是©。
A.监督学习 B.深度学习 C.半监督学习 D.无监督学习
5.下面符合特征选择标准的是(A)
A.能够反映不同事物差异的特征 B.越多越好
C.越少越好 D.数值型的比定性
数据好
6.给定一定数量的红细胞和白细胞图像及它们对应的标签,
设计出一个红细胞和白细胞分类器,这属于©问题。
A.半监督学习 B.无监督学习
C.监督学习 D.以上都可以
7.给定一定数量的红细胞和白细胞图像,但是并不知道图像
与标签的对应关系,设计一个红细胞和白细胞的分类器,这
属于(B)问题。
A.半监督学习 B.无监督学习
C.监督学习 D.强化学习
8.机器学习可以用于以下哪些情形(AB)
A.人类无法解释的专业知识 B.模型需要基于大量数据
C.当人类专业知识不存在时 D.模型必须定制
9.以下哪些领域应用机器学习需要考虑样本不平衡问题
(ABCD)?
A.医学诊断 B.预测罕见事件
C.检测信用卡欺诈 D.预测故障和失效
10.以下说法正确的是(BCD)
A.特征的个数越多,机器学习的效果越好
B.样本的数量越多,机器学习的效果越好
C.过拟合只在监督学习中出现,在无监督学习中没有过拟合
D.特征的个数应和样本的数量相匹配
11.泛化误差是指©
A.训练误差 B.测试误差
C.学习误差 D.测量误差
12.与有监督学习相比,下列哪些属于半监督学习的优势(多
选)(BD)
A.半监督学习的模型训练时间更短
B.在标注数据量有限时,采用半监督学习有望训练得到更优
的机器学习模型
C.半监督学习的数学优化问题更容易求解
D.能够节约大规模数据标注带来的时间和费用开销
习题 2
1.关于 Python 语言的语法,下列哪项是错误的?(B)
A.Python 程序中的代码缩进不能随意删除
B.import 语句必须写在程序的开始位置
C.Print(‘Hey’)输出 Hey 后会自动换行
D.Python 语言是区分大小写的
2.下列不属于 NumPy 数组属性的是(D)
A.ndim B. shape C.size D.add
3.创建一个 3×3 维的数组,下列代码中错误的是(D)
A.np.arange(0.9).reshape(3,3) B.np.eye(3)
C.np.radom.random([3,3,3]) D.np.mat(np.zeros((3,3)))
4.以下关于绘图标准流程语法错误的是(D)
A.绘制最简单的图形可以不用创建画布
B.添加图例可以在绘制图形之前
C.添加 x 轴、y 轴的标签可以在绘制图形之前
D.添加图的标题可以在 plt.show()方法之后
5.下列代码中能够绘制出散点图的是(A)
A.plt.scatter(x,y)
B.plt.plot(x,y)
C.plt.legend(x,y)
D.plt.figure(x,y)
6.下列字符串表示 plot 线条颜色、点的形状和类型为红色五
角星点断虚线的是(D)
A.‘bs-’ B. ‘go-.’ C. ‘r±.’ D. ‘r*:’
7.train_test_split()函数的返回值有(D)个
A.1 B. 2 C. 3 D. 4
8.数据(B)要求知道标本的最大值和最小值。
A.标椎化 B. 归一化 C. 二值化 D. 正则化
9.要设置 x 轴的坐标范围需要用到(B)
A.xlabel B. xlim C. xticks D. hlines
10.使用 Pandas 不能读取下列哪种文件(D)
A.xlsx B. txt C. CSV D. MDB
习题 3
1.下列哪一项不是一个集合?(A)
A.项 B.项集 C.事务 D.事务数据库
2.对于同一个事务数据库中的两条关联规则:A=C 和 C=A,可
知(A)。
A.它们的支持度一定相等 B.它们的置信度一定相
等
C.它们的支持度一定不相等 D.它们的置信度一定不
相等
3.设{A,B,C}不是频繁项集,则可知(B
A.{A,B}一定不是频繁项集 B.{A,B,C,D}一定不是频繁项集
C.{A,B}一定是频繁项集 D.{A,B,C,D}一定是频繁项集
4.若已知{A,B,C}的支持度是 50%,C 的支持度是 75%,则可知
(B)。
A.A.B=C 的置信度是 66.6%X
B.C=A,B 的置信度是 66.6%
C.A.B=C 的置信度是 150%X
D.C=A,B 的置信度是 150%
5.设 N(a)={A,B,E}表示对物品 a 感兴趣的用户有 A、B 和
E,N(b)={A,C,D}表示对物品 b 感兴趣的用户有 A、C 和 D,每个
用户对各物品的感兴趣程度均为 1,则物品 a、b 之间的相似
度为(A)
A.1/3 B.
机器学习课后答案
最新推荐文章于 2024-08-31 12:50:33 发布