AVL树的c++实现

AVL树的c++实现

1.概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当 于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年 发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之 差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。 一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

它的左右子树都是AVL树 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在 ,搜索时 间复杂度O( )。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4YDmd9JP-1652679175018)(C:\Users\DELL\AppData\Roaming\Typora\typora-user-images\image-20220516125235330.png)]

2. AVL树节点的定义
template<class T>
struct AVLTreeNode
 {
 AVLTreeNode(const T& data)
 : _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr)
 , _data(data), _bf(0)
 {}
 AVLTreeNode<T>* _pLeft; // 该节点的左孩子
 AVLTreeNode<T>* _pRight; // 该节点的右孩子
 AVLTreeNode<T>* _pParent; // 该节点的双亲
 T _data;
 int _bf; // 该节点的平衡因子
 };

3.AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入 过程可以分为两步: 1. 按照二叉搜索树的方式插入新节点 2. 调整节点的平衡因子

bool Insert(const T& data)
{
 /*
 1. 先按照二叉搜索树的规则将节点插入到AVL树中
 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否破坏了AVL树的平衡性
 pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent
 的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:
 1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可
 2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可
 
 此时:pParent的平衡因子可能有三种情况:0,正负1, 正负2
 1. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整成0,此
时满足
 AVL树的性质,插入成功
 2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更新成正负
1,此
 时以pParent为根的树的高度增加,需要继续向上更新
 3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进行旋转
处理
 */
     while (pParent)
     {
     // 更新双亲的平衡因子
         if (pCur == pParent->_pLeft)
         	pParent->_bf--;
         else
         	pParent->_bf++;
         // 更新后检测双亲的平衡因子
         if (0 == pParent->_bf)
         	break;
         else if (1 == pParent->_bf || -1 == pParent->_bf)
         {
             // 插入前双亲的平衡因子是0,插入后双亲的平衡因为为1 或者 -1 ,说明以双亲为根的二叉树
             // 的高度增加了一层,因此需要继续向上调整
             pCur = pParent;
             pParent = pCur->_pParent;
         }
         else
         {
             // 双亲的平衡因子为正负2,违反了AVL树的平衡性,需要对以pParent
             // 为根的树进行旋转处理
             if(2 == pParent->_bf)
             {
                 // ...
             }
             else
             {
    			// ...
     		}
     	}
     }
     return true;
}
4.AVL树的旋转

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡 化。根据节点插入位置的不同,AVL树的旋转分为四种:

  1. 新节点插入较高左子树的左侧—左左:右单旋

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-1xC9yZnQ-1652679175021)(C:\Users\DELL\AppData\Roaming\Typora\typora-user-images\image-20220516130835814.png)]

/*
 上图在插入前,AVL树是平衡的,新节点插入到1的左子树(注意:此处不是左孩子)中,1左子树增
加
 了一层,导致以2为根的二叉树不平衡,要让2平衡,只能将2左子树的高度减少一层,右子树增加
一层,
 即将左子树往上提,这样2转下来,因为2比1大,只能将其放在1的右子树,而如果1有右子
树,右子树根的值一定大于1,小于2,只能将其放在2的左子树,旋转完成后,更新节点的平衡因子
即可。在旋转过程中,有以下几种情况需要考虑:
 1. 1节点的右孩子可能存在,也可能不存在
 2. 2可能是根节点,也可能是子树
 如果是根节点,旋转完成后,要更新根节点
 如果是子树,可能是某个节点的左子树,也可能是右子树
 
同学们再此处可举一些详细的例子进行画图,考虑各种情况,加深旋转的理解
*/
void _RotateR(PNode pParent)
{
     // pSubL: pParent的左孩子
     // pSubLR: pParent左孩子的右孩子,注意:该
     PNode pSubL = pParent->_pLeft;
     PNode pSubLR = pSubL->_pRight;
     // 旋转完成之后,1的右孩子作为双亲的左孩子
     pParent->_pLeft = pSubLR;
     // 如果1的左孩子的右孩子存在,更新亲双亲
     if(pSubLR)
     pSubLR->_pParent = pParent;
     // 2 作为 1的右孩子
     pSubL->_pRight = pParent;	
    // 因为2可能是棵子树,因此在更新其双亲前必须先保存2的双亲
     PNode pPParent = pParent->_pParent;

     // 更新2的双亲
     pParent->_pParent = pSubL;

     // 更新1的双亲
     pSubL->_pParent = pPParent;
     // 如果2是根节点,根新指向根节点的指针
     if(NULL == pPParent)
     {
     _pRoot = pSubL;
     pSubL->_pParent = NULL;
     }
     else
     {
     // 如果2是子树,可能是其双亲的左子树,也可能是右子树
     if(pPParent->_pLeft == pParent)
     pPParent->_pLeft = pSubL;
     else
     pPParent->_pRight = pSubL;
     }
     // 根据调整后的结构更新部分节点的平衡因子
     pParent->_bf = pSubL->_bf = 0;
}

  1. 新节点插入较高右子树的右侧—右右:左单旋

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Ad1mlEEC-1652679175022)(C:\Users\DELL\AppData\Roaming\Typora\typora-user-images\image-20220516131731841.png)]
    3.新节点插入较高左子树的右侧—左右:先左单旋再右单旋

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-xxhY3kKV-1652679175023)(C:\Users\DELL\AppData\Roaming\Typora\typora-user-images\image-20220516132949382.png)]

将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再考虑平衡因 子的更新。

// 旋转之前,2的平衡因子可能是-1/0/1,旋转完成之后,根据情况对其他节点的平衡因子进行调整
void _RotateLR(PNode pParent)
{
     PNode pSubL = pParent->_pLeft;
     PNode pSubLR = pSubL->_pRight;

     // 旋转之前,保存pSubLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节点的平
    衡因子
     int bf = pSubLR->_bf;

     // 先对1进行左单旋
     _RotateL(pParent->_pLeft);

     // 再对3进行右单旋
     _RotateR(pParent);
     if(1 == bf)
     pSubL->_bf = -1;
     else if(-1 == bf)
     pParent->_bf = 1;
}

4.新节点插入较高右子树的左侧—右左:先右单旋再左单旋

参考右左双旋。 总结: 假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑 1. pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR 当pSubR的平衡因子为1时,执行左单旋 当pSubR的平衡因子为-1时,执行右左双旋 2. pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL 当pSubL的平衡因子为-1是,执行右单旋 当pSubL的平衡因子为1时,执行左右双旋 旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新。

5.AVL的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证 查询时高效的时间复杂度,即 。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如: 插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。 因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树, 但一个结构经常修改,就不太适合。

template<class K, class V>
struct AVLTreeNode
{
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;
	pair<K, V> _kv;

	int _bf; // balance factor

	AVLTreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _bf(0)
		, _kv(kv)
	{}
};

template<class K, class V>
class AVLTree
{
	typedef AVLTreeNode<K, V> Node;
public:
	AVLTree()
		:_root(nullptr)
	{}

	bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			return true;
		}

		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}

		cur = new Node(kv);
		if (parent->_kv.first < kv.first)
		{
			parent->_right = cur;
			cur->_parent = parent;
		}
		else
		{
			parent->_left = cur;
			cur->_parent = parent;
		}

		// 控制平衡
		// 1、更新平衡因子 -- 新增节点到根节点的祖先路径
		// 2、出现异常平衡因子,那么需要旋转平衡处理
		while (parent)
		{
			if (cur == parent->_left)
				parent->_bf--;
			else
				parent->_bf++;

			if (parent->_bf == 0)
			{
				break;
			}
			else if (parent->_bf == 1 || parent->_bf == -1)
			{
				// 继续往上更新
				cur = parent;
				parent = parent->_parent;
			}
			else if (parent->_bf == 2 || parent->_bf == -2)
			{
				// 旋转处理
				// 右单旋
				if (parent->_bf == -2 && cur->_bf == -1)
				{
					RotateR(parent);
				}
				else if (parent->_bf == 2 && cur->_bf == 1) // 左单旋
				{
					RotateL(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == 1)
				{
					RotateLR(parent);
				}
				else if (parent->_bf == 2 && cur->_bf == -1)
				{
					RotateRL(parent);
				}
				else
				{
					assert(false);
				}

				break;
			}
			else
			{
				// 说明插入更新平衡因子之前,树中平衡因子就有问题了
				assert(false);
			}
		}

		return true;
	}

	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
		{
			subRL->_parent = parent;
		}

		Node* parentParent = parent->_parent;
		subR->_left = parent;
		parent->_parent = subR;

		if (_root == parent)
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			if (parentParent->_left == parent)
				parentParent->_left = subR;
			else
				parentParent->_right = subR;
			subR->_parent = parentParent;
		}

		subR->_bf = parent->_bf = 0;
	}

	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		Node* parentParent = parent->_parent;

		subL->_right = parent;
		parent->_parent = subL;

		if (parent == _root)
		{
			_root = subL;
			_root->_parent = nullptr;
		}
		else
		{
			if (parentParent->_left == parent)
				parentParent->_left = subL;
			else
				parentParent->_right = subL;

			subL->_parent = parentParent;
		}

		subL->_bf = parent->_bf = 0;
	}

	void RotateLR(Node* parent)
	{
		RotateL(parent->_left);
		RotateR(parent);
	}

	void RotateRL(Node* parent)
	{
		RotateR(parent->_right);
		RotateL(parent);
	}
private:
	Node* _root;
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值