基于BP神经网络的风电功率预测方法(MATLAB程序)

关注“电气仔推送”获得资料

资源地址:

基于BP神经网络的风电功率预测方法MATLAB复现程序_风电功率预测资源-CSDN文库

复现文章:

基于BP神经网络的风电功率预测方法——刘立群(2021年)

摘要:

风电功率预测结果的准确性,不仅关系到风力发电厂的综合运行效率,也与区域运行成本具备直接联系,为解决传统预测方法的不足,基于前馈神经网络———BP(反向传播)神经网络,设计一种风电功率预测方法。考虑到BP神经网络属于一种多层结构的网络,因此,基于BP神经网络的预测模型也具备多层结构。应用预测模型对风电功率的随机性与波动性特征进行描述。并采用校正风电功率预测结果误差、规范风电功率预测流程的方式,完成方法设计。经过实例分析,证明设计的方法对风电功率的预测结果误差均在最优误差范围内,预测的数值具有更高的价值。

主要程序:

clc
clear
load data A O 
% 获取训练集和测试集矩阵
[input_train]=A(1:180,:)';   
[output_train]=O(1:180,:)'; 
[input_test]=A(181:360,:)';  
[output_test]=O(181:360,:)';

% 数据归一化处理
[inputn_train, inputStr] = mapminmax(input_train);
[outputn_train, outputStr] = mapminmax(output_train);
inputn_test=mapminmax('apply',input_test,inputStr);

% 建立BP神经网络
net = newff(inputn_train, outputn_train, [4 10 1], {'purelin', 'logsig', 'purelin'});
    net.trainParam.show = 10;%每10轮转显示一次结果
    net.trainParam.epochs = 500;%最大迭代次数
    net.trainParam.lr = 0.05;%学习速率
    net.trainParam.goal = 1 * 10^(-3);%训练误差精度
    net.divideFcn = '';
    
% 开始训练网络
net = train(net, inputn_train, outputn_train);
%训练完成

输出结果:

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学习不好的电气仔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值