Fibonacci数列五种解法

一、递归

#include<stdio.h>
int F(int n){
    if(n==0) return 0;
    if(n==1||n==2) return 1;
    return F(n-1)+F(n-2);
}
int main(){
    int n;
    while(scanf("%d",&n)!=EOF){
        int s = F(n);
        printf("%d\n",s%100000009);
    }
    return 0;
}

二、递推

注意:每次结果都要取模(c=(a+b)%100000009;)

#include<stdio.h>
long long int F(long long int n){
    if(n==0) return 0;
    if(n==1||n==2) return 1;
    int a=1,b=1,c=0;
    for(long long int i=3;i<=n;i++){//递推
        c=(a+b)%100000009;
        a=b;
        b=c;
    }
    return c;
}
int main(){
    long long int n;
    while(scanf("%lld",&n)!=EOF){
        if(n<=100000){
            int s=F(n);
            printf("%lld\n",s%100000009);
        }
        else break;
    }
    return 0;
}

三、递推+数组记忆

注意:数组为dp[10000001]

#include<stdio.h>
long long dp[10000001]={0,1};

long long int F(long long int n){
    if(n<2) return n;
       if(dp[n]!=0) return dp[n];
       for(long long int i=2;i<=n;++i){
        dp[i]=(dp[i-1]+dp[i-2])%100000009;
    }
    return dp[n];
}
int main(){
    long long int n;
    while(scanf("%lld",&n)!=EOF){
            printf("%lld\n",F(n)%100000009);
    }
    return 0;
}

四、递归+数组

#include<stdio.h>
long long dp[100001]={0};

long long int F(long long int n){
    if(n==1||n==2){
        dp[n]=1;
        return 1;
    }
       if(dp[n]!=0) return dp[n];
       else{
       dp[n]=(F(n-1)+F(n-2))%10000009;
           return    dp[n];
       }
    

}
int main(){
    long long int n;
    while(scanf("%lld",&n)!=EOF){
            printf("%lld\n",F(n)%10000009);
    }
    return 0;
}

五、矩阵快速幂

代码如下:

#include<bits/stdc++.h>
using namespace std;
const long long int mod=100000009;

struct Matrix{//构造矩阵 
    long long a[3][3];
    Matrix(){
        memset(a,0,sizeof(a));//矩阵元素全部初始化为0
    } 
}base,ans;//base为构造矩阵,ans为斐波那契矩阵 

void init(){//矩阵初始化 
    //矩阵
    //[0,1]
    //[1,1]
    base.a[1][1]=0;
    base.a[1][2]=base.a[2][1]=base.a[2][2]=1;
    
    //初始斐波那契数列f1=1,f2=1   
    ans.a[1][1]=1;
    ans.a[1][2]=1;
}

Matrix operator*(Matrix &c,Matrix &b)//矩阵乘法重写
{
    Matrix res;//临时矩阵res=a*b(res的行数=a的行数,res的列数=b的列数)
    for(int i=1; i<=2;i++)
        for(int j=1; j<=2;j++)//前面两个for确定结果res.a[i][j],每个res.a[i][j]
            for(int k=1; k<=2;k++)
            {
                //第i行乘以第j列的和
                res.a[i][j] = (res.a[i][j]+c.a[i][k]*b.a[k][j])%mod;
            }
    return res;
}

void qpow(long long int n){//快速幂 
    while(n){
        if(n&1) ans=ans*base;    //n为奇数
        base=base*base;         //n为偶数
        n>>=1;                    // n/=2
    }
}

int main()
{
    int n;
    while(scanf("%d",&n)!=EOF){
        if(n==1||n==2){
            printf("1\n");
            continue;
        }
        init();   //每次初始化矩阵
        qpow(n-2);//矩阵快速幂
        printf("%d\n",ans.a[1][2]);
    }
}


基础知识点:

  1. if(n&1)==if(n%2==1)

  1. n>>=1:移位操作,表示把二进制数往右移一位,相当于/2

  1. using namespace std:打开std 的标准命名空间。

  1. #include<bits/stdc++.h>万能头文件

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值