# 代码汇总
# 1.读取数据
import pandas as pd
df = pd.read_excel('股票客户流失.xlsx')
# 2.划分特征变量和目标变量
X = df.drop(columns='是否流失')
y = df['是否流失']
# 3.划分训练集和测试集
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)
# 4.模型搭建
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X_train, y_train)
# 5.模型使用1 - 预测数据结果
y_pred = model.predict(X_test)
print(y_pred[0:100]) # 打印预测内容的前100个看看
# 查看全部的预测准确度
from sklearn.metrics import accuracy_score
score = accuracy_score(y_pred, y_test)
print(score) # 打印整体的预测准确度
# 6.模型使用2 - 预测概率
y_pred_proba = model.predict_proba(X_test)
print(y_pred_proba[0:5]) # 打印前5个客户的分类概率
逻辑回归模型 - 股票客户流失预警模型
最新推荐文章于 2023-05-08 22:51:00 发布