图像分割与提取

本文详细介绍了图像分割中的分水岭算法,包括二值化、形态学操作、距离变换和连接组件处理等步骤,用于确定图像中的前景和背景区域,特别适用于处理物体接触或重叠的情况。
摘要由CSDN通过智能技术生成

 © Fu Xianjun. All Rights Reserved

一、分水岭算法

1.1二值化

import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('coins.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
plt.imshow(thresh, cmap='gray')
plt.show()

1.2形态学操作(移除噪声) 先使用开运算去除图像中的细小白色噪点,然后通过腐蚀运算移除边界像素,得到的图像中的白色区域肯定是真实前景,即靠近硬币中心的区域(下 面左边的图);膨胀运算使得一部分背景成为了物体到的边界,得到的图像中的黑色区域肯定是真实背景,即远离硬币的区域(下面中间的图)。 剩下的区域(硬币的边界附近)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值