解决jupyter中无法运行multiprocessing的问题

在Jupyter中运行multiprocessing时遇到卡住不运行的情况,而在Pycharm中正常。经验证,问题可能源于Jupyter和Pycharm的设计差异。解决方案是将函数写入单独的模块,然后通过import调用来运行。后续计划整理threading和multiprocessing的区别及运行方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题:

在研究论文代码时候遇到一个需要运行multiprocessing,但是源代码是在jupyter中的却无法运行multiprocessing,会一直卡住,运行在[*]这个状态中,但是无论运行多久都不会报错,然而在pycharm中运行完全没有问题

问题描述:

用一个简单的小例子说明一下:
在这里插入图片描述在这里插入图片描述
这里会一直卡住,无法运行也不会报错。
我以为是我写的程序有问题,因为jupyter中不会显示子程序的输出结果的,所以将程序放在pycharm中看看运行效果

import multiprocessing

def fun(a,b):
### 提升Jupyter Notebook运行代码速度的方法 为了提高Jupyter Notebook运行代码的速度,可以从以下几个方面入手: #### 1. **优化内核性能** Jupyter Notebook依赖于Python内核来执行代码。如果内核响应缓慢,则可能是由于资源不足或其他配置问题引起的。可以通过以下方式改善: - 确保使用的`ipykernel`版本是最新的,可以使用命令 `pip install --upgrade ipykernel` 更新[^2]。 - 如果遇到内核卡顿的情况,尝试重启内核(Kernel -> Restart Kernel)。有时内存泄漏或长时间占用可能导致性能下降。 #### 2. **调整硬件资源配置** Jupyter Notebook的运行效率直接受限于计算机的CPU、GPU和RAM等硬件资源。以下是几种可能的解决方案: - 增加可用内存:关闭不必要的程序和服务以释放更多RAM给Jupyter Notebook。 - 使用多线程或多进程处理:对于支持并行计算的任务,考虑引入库如`multiprocessing` 或者 `joblib` 来加速运算[^1]。 ```python from multiprocessing import Pool def process_data(x): return x * 2 if __name__ == '__main__': data = range(1000) with Pool(processes=4) as pool: results = pool.map(process_data, data) print(results[:10]) ``` #### 3. **更新相关软件包** 某些情况下,特定版本之间的不兼容可能会导致性能瓶颈。例如,在引用中提到过的一个问题是高版本的`pyzmq`与旧版Jupyter Notebook之间可能存在冲突[^3]。因此,建议定期检查并升级必要的依赖项: - 升级Jupyter Notebook本身及其扩展插件:`pip install --upgrade notebook jupyterlab` - 调整`pyzmq`至适合当前环境的稳定版本:`pip install pyzmq==18.1.0` (具体版本需视实际情况而定) #### 4. **减少I/O操作开销** 频繁读写文件或者网络请求会显著拖慢整体流程。针对这种情况可采取措施包括但不限于缓存中间结果以及批量加载数据而非逐条获取。 - 利用Pandas DataFrame持久化功能保存临时表格以便后续快速访问; - 对远程API调用实施节流机制防止过度消耗带宽时间。 #### 5. **排查潜在错误源** 当发现即使做了以上改进仍无明显效果时,应该深入挖掘是否存在隐藏的技术障碍比如死循环逻辑错误或者是第三方模块引发异常行为等问题所在之处。借助调试工具定位确切位置进而修复之。 --- ###
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值