1208:2的幂次方表示

该文章描述了一个编程问题,要求输入一个不超过20000的正整数n,将其分解为2的幂次方的和,并按照特定格式输出。通过递归方法,不断找到最大的2的幂次不大于n的部分,然后处理剩余的数值,直到n减到0。代码示例中给出了C++的实现。
摘要由CSDN通过智能技术生成

【题目描述】

任何一个正整数都可以用2的幂次方表示。例如:

137=27+23+20

同时约定方次用括号来表示,即ab可表示为a(b)。由此可知,137可表示为:

2(7)+2(3)+2(0)

进一步:7=22+2+20

(21

用2

表示)

3=2+20

所以最后137可表示为:

2(2(2)+2+2(0))+2(2+2(0))+2(0)

又如:

1315=210+28+25+2+1

所以1315最后可表示为:

2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)

【输入】

一个正整数n(n≤20000)。

【输出】

一行,符合约定的n的0,2表示(在表示中不能有空格)。

【输入样例】

137

【输出样例】

2(2(2)+2+2(0))+2(2+2(0))+2(0)

题目分析

此题目其实就是分解数字,比如7

我们每次的递归都是取2的i次幂<=7,且2的i+1次幂>7。然后处理输出,然后递归7-2

的i次方,也就是剩余的数即可。

处理输出的时候要注意,次幂1的处理与剩余1(如3-2=1的1)的处理,要区分。

具体见代码。

代码

#include<bits/stdc++.h>
using namespace std;

void dig(int a){
    if(a==2){
        cout<<"2";
        return ;
    }
    else if(a==0){
        cout<<"0";
        return ;
    }
    else{
        int k=1;
        while(pow(2,k)<=a){
            k++;
        }
        if(k-1==1){
            cout<<"2";    
        } 
        else{
            cout<<"2(";
            dig(k-1);
            cout<<")";                
        }        
        if((a-pow(2,k-1))!=0){
            cout<<"+";
            dig(a-pow(2,k-1));
        }
    }
}

int main(){
    int n;
    cin>>n;
    dig(n);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值