判断是否为重言式的方法(2.1)

1.真值表法

根据重言式的定义,即一个公式φ是重言式当且仅当对所有赋值v,v(φ)=1,于是我们对此命题逻辑的所有原子命题进行赋值来判断是否是重言式。
在这里插入图片描述
如:(p∨q)→(p∧q)
可见原式的结果不为全为1或不全为0,因此原式为重言式

2.归谬赋值法

在命题逻辑中,析取式有1为1,合取式有0为0,所以不妨对式子进行赋值,查看式子是否全为1或全为0,还是有1有0来判断是重言式、矛盾式还是可满足式。
如:¬(p→q)∧q∧r
设:q或r为0,则原式为0;p为0,¬(p→q)为0,可推出原式也为0,因此原式为矛盾式

3.等值演算法

设A,B是两个命题公式,若A,B构成的等价式A↔B为重言式,则称A与B是等值的,记作A⇔B。因此我们只需要通过等值演算判断两个式子是否等值来确定重言式
例如:
在这里插入图片描述
可以看出结果为0,原式为矛盾式。
在这里插入图片描述
可以看出结果为p,其中00,01是成假赋值,10,11是成真赋值。

4.主析取范式法

通过求取公式的主析取范式来判断公式类型。
在这里插入图片描述
公式等值于1,它的主析取范式包含所有的最小项,因此原式为重言式。
在这里插入图片描述
该公式是可满足式,但不是重言式,因为它的主析取范式没含全部8个极小值(2^3=8)。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值