离散数学-集合论-关系的概念、表示和运算(7)

离散数学-关系的概念、表示和运算

0前言

函数是x 到y 的映射,这种映射反就是一种关系。因为定义域x 是一个集合、值域y 也是一个集合所以函数就是一个<x, y> 有序对的集合。因此,我们可以通过二元关系来定义函数的概念,利用有序对的集合来表示函数。

1 有序对与笛卡尔积

1.1 有序对

定义: 由两个元素 x 和 y,按照一定的顺序组成的二元组称为 有序对 ,记作<x,y>。
性质: 1.当x≠y时, 有序性 <x,y>≠<y,x>;
2.<x,y>=<u,v>的充分必要条件是x=u且y=v。
例1 <x+2,4> = <5,2x+y>,求 x和 y.
解:由有序对相等的充要条件有:
{ x + 2 = 5 2 x + y = 4 \begin{cases} x+2=5\\ 2x+y=4 \end{cases} { x+2=52x+y=4
解得:x=3,y=-2.

1.2 笛卡尔积

定义 设A,B为集合,A与B 的笛卡儿积记作AXB, 即 A X B ={ <x,y> | x ∈ \in A ∧ \wedge y ∈ \in B }
例2 A={a,b},B={0,1,2}则:
AXB={<a,0>,<a,1>,<a,2>,<b,0>,<b,1>,<b,2>}
BXA={<0,a>,<0,b>,<1,a>,<1,b>,<2,a>,<2,b>}
例3 A={ Ø \text{\O} Ø},P(A)XA
P(A)={ { Ø \text{\O} Ø}}
P(A)XA={< Ø \text{\O} Ø, Ø \text{\O} Ø>,<{ Ø \text{\O} Ø}, Ø \text{\O} Ø>}

1.3 笛卡尔积得性质

(1)不满足交换律  AXB≠BXA (A≠B,A≠ Ø \text{\O} Ø,B≠ Ø \text{\O} Ø)
(2)不满足结合律  (AXB)XC≠AX(BXC) (A≠ Ø \text{\O} Ø,B≠ Ø \text{\O} Ø)
(3)对于并或交运算满足分配律
  AX(B∪C)=(AXB)∪(AXC)
  (B∪C)XA=(BXA)∪(CXA)
  AX(B∩C)=(AXB)∩(AXC)
  (B∩C)XA=(BXA)∩(CXA)
(4)  A ⊆ \sube C ∧ \land B ⊆ \sube D ⇒ \rArr AXB ⊆ \sube CXD

证明:
(1)由定义可得:AX Ø \text{\O} Ø= Ø \text{\O} Ø, Ø \text{\O} ØXA= Ø \text{\O} Ø
设A=B
⇒ \rArr A= Ø \text{\O} Ø ∨ \lor B= Ø \text{\O} Ø
可推出满足交换律
(2)当A= Ø \text{\O} Ø ∨ \lor B= Ø \text{\O} Ø ∨ \lor C= Ø \text{\O} Ø时,结果等于 Ø \text{\O} Ø,满足结合律。
(3)任取<x,y>
    <x,y>∈AX(B∪C)
⇔ \Harr x∈A ∧ \land y∈B∪C
⇔ \Harr x∈A ∧ \land (y∈B ∨ \lor y∈C)
⇔ \Harr (x∈A ∧ \land y∈B) ∨ \lor (x∈A ∧ \land y∈C)
⇔ \Harr <x,y>∈AXB ∨ \lor <x,y>∈AXC
⇔ \Harr <x,y>∈(AXB)∪(AXC)
所以有AX(B∪C)=(AXB)∪(AXC)

2 关系的定义

2.1 二元关系

定义 如果一个集合满足以下条件之一, 则称该集合为一个二元关系, 简称为关系,记作R.
(1)集合非空, 且它的元素都是有序对
(2)集合是空集

如<x,y>∈R, 可记作 xRy;
实例:R={<1,2>,<a,b>}, S={<1,2>,a,b}.
R是二元关系, 当a, b不是有序对时,S不是二元关系。

2.2 A上的二元关系

定义 设A,B为集合, A×B的任何子集所定义的二元关系叫做从A到B的二元关系, 当A=B时则叫做 A上的二元关系.

例4 A={0,1}, B={1,2,3}, R1={<0,2>}, R2=A×B, R3={<0,1>}. 那么 R1, R2, R3 是从 A 到 B的二元关系, R3 也是 A上的二元关系.

集合A上的二元关系的数目依赖于A中的元素个数,如果|A|=n, |A×A|= n 2 n^2 n2, A×A的子集有 2 n 2 2^{n^2} 2n2个. 每一个子集代表一个A上的二元关系,所以 A上有 2 n 2 2^{n^2} 2n2个不同的二元关系.
例如 |A|=3, 则 A上有 2 3 2 2^{3^2} 232=512个不同的二元关系.
|A|=m,|B|=n则AXB的元素数|AXB|=mn,AXB有 2 m ⋅ 2 n = 2 m n 2^m·2^n=2^{mn} 2m2n=2mn不同的二元关系。

2.3 关系的类型

空关系:设 A 为任意集合,空集 Ø \text{\O} Ø是 AXA的子集,称为空关系.
全域关系 E A E_A EA E A E_A EA={<x,y>|x∈A ∧ \land y∈A}=AXA
恒等关系 I A I_A IA I A I_A IA={<x,x>|x∈A}
小于等于关系 L A L_A LA L A L_A LA={<x,y>|x,y∈A ∧ \land x≤y},A ⊆ \sube R,R为实数集
整除关系 D A D_A DA D A D_A DA={<x,y>|x,y∈B ∧ \land x整除y},B ⊆ \sube Z*,Z*为非0整数
包含关系 R ⊆ R_\sube R R ⊆ R_\sube R={<x,y>|x,y∈A ∧ \land x ⊆ \sube y},A是集合族

例如, A={1,2}, 则
E A E_A EA={<1,1>,<1,2>,<2,1>,<2,2>}
I A I_A IA={<1,1>,<2,2>}
例如A={1,2,3},B={a,b},则
L A L_A LA={<1,1>,<1,2>,<1,3>,<2,2>,<2,3>,< 3,3>}
D A D_A DA={<1,1>,<1,2>,<1,3>,<2,2>,< 3,3>}
A=P(B)={ Ø \text{\O} Ø,{a},{b},{a,b}}
R ⊆ R_\sube R={< Ø \text{\O} Ø, Ø \text{\O} Ø>,< Ø \text{\O} Ø,{a}>,< Ø \text{\O} Ø,{b}>,< Ø \text{\O} Ø,{a,b}>,<{a},{a}>,<{a},{a,b}>,<{b},{b}>,<{b},{a,b}>,<{a,b},{a,b}>}

2.4 关系表示

关系的表示方式有三种:关系的集合表达式、关系矩阵、关系图。
关系集合表达式:A X B ={ <x,y> | x ∈ \in A ∧ \wedge y ∈ \in B }
关系矩阵:若A={ a 1 , a 2 , a 3 . . . . . . a m a_1,a_2,a_3......a_m a1,a2,a3......am},B={ b 1 , b 2 , b 3 . . . . . . . b n b_1,b_2,b_3.......b_n b1,b2,b3.......bn}R是从A到B的关系,R的关系是R={ < a 1 , b 1 > , < a 2 , b 2 > , . . . . . , < a m , b n > <a_1,b_1>,<a_2,b_2>,.....,<a_m,b_n> <a1,b1><a2,b2>,.....,<am,bn>}矩阵是:
在这里插入图片描述
关系图: 若A= { x 1 , x 2 , … , x m x_1, x_2, …, x_m x1,x2,,xm},R是从A上的关系,R的关系图是 G R G_R GR=<A, R>, 其中A为结点集,R为边集.如果< x i , x j x_i,x_j xi,xj>属于关系R,在图中就有一条从 x i x_i xi x j x_j xj的有向边.
注意:A, B为有穷集,关系矩阵适于表示从A到B的关系或者A上的关系,关系图适于表示A上的关系。
例如&

  • 3
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值