目录
图论基础和表示
一、概念及其介绍
图论(Graph Theory)是离散数学的一个分支,是一门研究图(Graph)的学问。
图是用来对对象之间的成对关系建模的数学结构,由"节点"或"顶点"(Vertex)以及连接这些顶点的"边"(Edge)组成。
值得注意的是,图的顶点集合不能为空,但边的集合可以为空。图可能是无向的,这意味着图中的边在连接顶点时无需区分方向。否则,称图是有向的。下面左图是一个典型的无向图结构,右图则属于有向图。本章节介绍的图都是无向图。
图的分类:无权图和有权图,连接节点与节点的边是否有数值与之对应,有的话就是有权图,否则就是无权图。
图的连通性:在图论中,连通图基于连通的概念。在一个无向图 G 中,若从顶点 i 到顶点 j 有路径相连(当然从j到i也一定有路径),则称 i 和 j 是连通的。如果 G 是有向图,那么连接i和j的路径中所有的边都必须同向。如果图中任意两点都是连通的,那么图被称作连通图。如果此图是有向图,则称为强连通图(注意:需要双向都有路径)。图的连通性是图的基本性质。
完全图:完全是一个简单的无向图,其中每对不同的顶点之间都恰连有一条边相连。
自环边:一条边的起点终点是一个点。
平行边:两个顶点之间存在多条边相连接。
二、适用说明
图可用于在物理、生物、社会和信息系统中建模许多类型的关系和过程,许多实际问题可以用图来表示。因此,图论成为运筹学、控制论、信息论、网络理论、博弈论、物理学、化学、生物学、社会科学、语言学、计算机科学等众多学科强有力的数学工具。在强调其应用于现实世界的系统时,网络有时被定义为一个图,其中属性(例如名称)之间的关系以节点和或边的形式关联起来。
三、图的表达形式
邻接矩阵:1 表示相连接,0 表示不相连。
邻接表:只表达和顶点相连接的顶点信息
邻接表适合表示稀疏图 (Sparse Graph)
邻接矩阵适合表示稠密图 (Dense Graph)
Java 测试代码
(1) 邻接矩阵
/**
* 邻接矩阵
*/
public class DenseGraph {
// 节点数
private int n;
// 边数
private int m;
// 是否为有向图
private boolean directed;
// 图的具体数据
private boolean[][] g;
// 构造函数
public DenseGraph( int n , boolean directed ){
assert n >= 0;
this.n = n;
this.m = 0;
this.directed = directed;
// g初始化为n*n的布尔矩阵, 每一个g[i][j]均为false, 表示没有任和边
// false为boolean型变量的默认值
g = new boolean[n][n];
}
// 返回节点个数
public int V(){ return n;}
// 返回边的个数
public int E(){ return m;}
// 向图中添加一个边
public void addEdge( int v , int w ){
assert v >= 0 && v < n ;
assert w >= 0 && w < n ;
if( hasEdge( v , w ) )
return;
g[v][w] = true;
if( !directed )
g[w][v] = true;
m ++;
}
// 验证图中是否有从v到w的边
boolean hasEdge( int v , int w ){
assert v >= 0 && v < n ;
assert w >= 0 && w < n ;
return g[v][w];
}
}
(2)邻接表
import java.util.Vector;
/**
* 邻接表
*/
public class SparseGraph {
// 节点数
private int n;
// 边数
private int m;
// 是否为有向图
private boolean directed;
// 图的具体数据
private Vector<Integer>[] g;
// 构造函数
public SparseGraph( int n , boolean directed ){
assert n >= 0;
this.n = n;
this.m = 0;
this.directed = directed;
// g初始化为n个空的vector, 表示每一个g[i]都为空, 即没有任和边
g = (Vector<Integer>[])new Vector[n];
for(int i = 0 ; i < n ; i ++)
g[i] = new Vector<Integer>();
}
// 返回节点个数
public int V(){ return n;}
// 返回边的个数
public int E(){ return m;}
// 向图中添加一个边
public void addEdge( int v, int w ){
assert v >= 0 && v < n ;
assert w >= 0 && w < n ;
g[v].add(w);
if( v != w && !directed )
g[w].add(v);
m ++;
}
// 验证图中是否有从v到w的边
boolean hasEdge( int v , int w ){
assert v >= 0 && v < n ;
assert w >= 0 && w < n ;
for( int i = 0 ; i < g[v].size() ; i ++ )
if( g[v].elementAt(i) == w )
return true;
return false;
}
}
相邻节点迭代器
图论中最常见的操作就是遍历邻边,通过一个顶点遍历相关的邻边。邻接矩阵的遍历邻边的时间复杂度为 O(V),邻接表可以直接找到,效率更高。
邻接矩阵迭代:
...
public Iterable<Integer> adj(int v) {
assert v >= 0 && v < n;
Vector<Integer> adjV = new Vector<Integer>();
for(int i = 0 ; i < n ; i ++ )
if( g[v][i] )
adjV.add(i);
return adjV;
}
...
邻接表迭代:
...
// 返回图中一个顶点的所有邻边
// 由于java使用引用机制,返回一个Vector不会带来额外开销,
public Iterable<Integer> adj(int v) {
assert v >= 0 && v < n;
return g[v];
}
...
对于这两种图的表达方式我们可以抽象出一个接口,生成这一套算法的框架,而不用去考虑底层是邻接表还是邻接矩阵。
本小节写了一个测试用例 GraphReadTest,通过调用抽象接口实现图的展示,可以在 read 包查看。
/**
* 图的抽象接口
*/
public interface Graph {
public int V();
public int E();
public void addEdge( int v , int w );
boolean hasEdge( int v , int w );
void show();
public Iterable<Integer> adj(int v);
}
Java 测试代码
(1)邻接矩阵迭代
import java.util.Vector;
/**
* 邻接矩阵迭代
*/
public class DenseGraphIterater {
// 节点数
private int n;
// 边数
private int m;
// 是否为有向图
private boolean directed;
// 图的具体数据
private boolean[][] g;
// 构造函数
public DenseGraphIterater( int n , boolean directed ){
assert n >= 0;
this.n = n;
this.m = 0;
this.directed = directed;
// g初始化为n*n的布尔矩阵, 每一个g[i][j]均为false, 表示没有任和边
// false为boolean型变量的默认值
g = new boolean[n][n];
}
// 返回节点个数
public int V(){ return n;}
// 返回边的个数
public int E(){ return m;}
// 向图中添加一个边
public void addEdge( int v , int w ){
assert v >= 0 && v < n ;
assert w >= 0 && w < n ;
if( hasEdge( v , w ) )
return;
g[v][w] = true;
if( !directed )
g[w][v] = true;
m ++;
}
// 验证图中是否有从v到w的边
boolean hasEdge( int v , int w ){
assert v >= 0 && v < n ;
assert w >= 0 && w < n ;
return g[v][w];
}
// 返回图中一个顶点的所有邻边
// 由于java使用引用机制,返回一个Vector不会带来额外开销,
public Iterable<Integer> adj(int v) {
assert v >= 0 && v < n;
Vector<Integer> adjV = new Vector<Integer>();
for(int i = 0 ; i < n ; i ++ )
if( g[v][i] )
adjV.add(i);
return adjV;
}
}
(2)邻接表迭代
import java.util.Vector;
/**
* 邻接表迭代
*/
public class SparseGraphIterater {
private int n; // 节点数
private int m; // 边数
private boolean directed; // 是否为有向图
private Vector<Integer>[] g; // 图的具体数据
// 构造函数
public SparseGraphIterater( int n , boolean directed ){
assert n >= 0;
this.n = n;
this.m = 0; // 初始化没有任何边
this.directed = directed;
// g初始化为n个空的vector, 表示每一个g[i]都为空, 即没有任和边
g = (Vector<Integer>[])new Vector[n];
for(int i = 0 ; i < n ; i ++)
g[i] = new Vector<Integer>();
}
public int V(){ return n;} // 返回节点个数
public int E(){ return m;} // 返回边的个数
// 向图中添加一个边
public void addEdge( int v, int w ){
assert v >= 0 && v < n ;
assert w >= 0 && w < n ;
g[v].add(w);
if( v != w && !directed )
g[w].add(v);
m ++;
}
// 验证图中是否有从v到w的边
boolean hasEdge( int v , int w ){
assert v >= 0 && v < n ;
assert w >= 0 && w < n ;
for( int i = 0 ; i < g[v].size() ; i ++ )
if( g[v].elementAt(i) == w )
return true;
return false;
}
// 返回图中一个顶点的所有邻边
// 由于java使用引用机制,返回一个Vector不会带来额外开销,
public Iterable<Integer> adj(int v) {
assert v >= 0 && v < n;
return g[v];
}
}
寻路算法
图的寻路算法也可以通过深度优先遍历 dfs 实现,寻找图 graph 从起始 s 点到其他点的路径,在上一小节的实现类中添加全局变量 from数组记录路径,from[i] 表示查找的路径上i的上一个节点。
首先构造函数初始化寻路算法的初始条件,from = new int[G.V()] 和 from = new int[G.V()],并在循环中设置默认值,visited 数组全部为false,from 数组全部为 -1 值,后面对起始节点进行 dfs 的递归处理。
...
// 构造函数, 寻路算法, 寻找图graph从s点到其他点的路径
public Path(Graph graph, int s){
// 算法初始化
G = graph;
assert s >= 0 && s < G.V();
visited = new boolean[G.V()];
from = new int[G.V()];
for( int i = 0 ; i < G.V() ; i ++ ){
visited[i] = false;
from[i] = -1;
}
this.s = s;
// 寻路算法
dfs(s);
}
...
那么判断 s 点到 w 点是否有路径,只要查询 visited 对应数组值即可。
...
boolean hasPath(int w){
assert w >= 0 && w < G.V();
return visited[w];
}
...
获取 s 点到 w 点的具体路径,我们用 path 方法来实现,先判断是否连通,可调用 hasPath 方法,由构造函数可知只需通过 from 数组往上追溯就能找到所有的路径。
...
Vector<Integer> path(int w){
assert hasPath(w) ;
Stack<Integer> s = new Stack<Integer>();
// 通过from数组逆向查找到从s到w的路径, 存放到栈中
int p = w;
while( p != -1 ){
s.push(p);
p = from[p];
}
// 从栈中依次取出元素, 获得顺序的从s到w的路径
Vector<Integer> res = new Vector<Integer>();
while( !s.empty() )
res.add( s.pop() );
return res;
}
...
Java 测试代码
import java.util.Stack;
import java.util.Vector;
/**
* 寻路
*/
public class Path {
// 图的引用
private Graph G;
// 起始点
private int s;
// 记录dfs的过程中节点是否被访问
private boolean[] visited;
// 记录路径, from[i]表示查找的路径上i的上一个节点
private int[] from;
// 图的深度优先遍历
private void dfs( int v ){
visited[v] = true;
for( int i : G.adj(v) )
if( !visited[i] ){
from[i] = v;
dfs(i);
}
}
// 构造函数, 寻路算法, 寻找图graph从s点到其他点的路径
public Path(Graph graph, int s){
// 算法初始化
G = graph;
assert s >= 0 && s < G.V();
visited = new boolean[G.V()];
from = new int[G.V()];
for( int i = 0 ; i < G.V() ; i ++ ){
visited[i] = false;
from[i] = -1;
}
this.s = s;
// 寻路算法
dfs(s);
}
// 查询从s点到w点是否有路径
boolean hasPath(int w){
assert w >= 0 && w < G.V();
return visited[w];
}
// 查询从s点到w点的路径, 存放在vec中
Vector<Integer> path(int w){
assert hasPath(w) ;
Stack<Integer> s = new Stack<Integer>();
// 通过from数组逆向查找到从s到w的路径, 存放到栈中
int p = w;
while( p != -1 ){
s.push(p);
p = from[p];
}
// 从栈中依次取出元素, 获得顺序的从s到w的路径
Vector<Integer> res = new Vector<Integer>();
while( !s.empty() )
res.add( s.pop() );
return res;
}
// 打印出从s点到w点的路径
void showPath(int w){
assert hasPath(w) ;
Vector<Integer> vec = path(w);
for( int i = 0 ; i < vec.size() ; i ++ ){
System.out.print(vec.elementAt(i));
if( i == vec.size() - 1 )
System.out.println();
else
System.out.print(" -> ");
}
}
}