【导数术】补充:历年高考真题

导数真题练习

【1】2022年度真题集

(2022-新高考1卷)

已知函数 f ( x ) = e x − a x f(x)=e^x-ax f(x)=exax g ( x ) = a x − ln ⁡ x g(x)=ax-\ln x g(x)=axlnx有相同的最小值.

(1)求 a a a

(2)证明:存在直线 y = b y=b y=b,其与两条曲线 y = f ( x ) y=f(x) y=f(x) y = g ( x ) y=g(x) y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.

(2022-全国甲卷)

21. 21. 21. ( 12 (12 (12 ) ) )

已知函数 f ( x ) = e x x − l n x + x − a f(x)=\frac{e^x}{x}-lnx+x-a f(x)=xexlnx+xa.

(1)若 f ( x ) ≥ 0 f(x)\geq0 f(x)0,求 a a a的取值范围;

(2)证明:若 f ( x ) f(x) f(x)有两个零点 x 1 , x 2 x_1,x_2 x1,x2,则 x 1 x 2 < 1 x_1x_2<1 x1x2<1

(2022-全国乙卷)

21. 21. 21. ( 12 (12 (12 ) ) )

已知函数 f ( x ) = l n ( 1 + x ) + a x e − x f(x)=ln(1+x)+axe^{-x} f(x)=ln(1+x)+axex

(1)当 a = 1 a=1 a=1时,求曲线 f ( x ) f(x) f(x)在点 ( 0 , f ( 0 ) ) (0,f(0)) (0,f(0))处的切线方程;

(2)若 f ( x ) f(x) f(x)在区间 ( − 1 , 0 ) (-1,0) (1,0) ( 0 , + ∞ ) (0,+\infty) (0,+)各恰有一个零点,求 a a a的取值范围.

【2】2021年度真题集

(2021-全国甲卷)

21. 21. 21. ( 12 (12 (12 ) ) )

已知 a > 0 a>0 a>0 a ≠ 1 a\neq 1 a=1,函数 f ( x ) = x a a x ( x > 0 ) f(x)=\frac{x^a}{a^x}(x>0) f(x)=axxa(x>0).

(1)当 a = 2 a=2 a=2时,求 f ( x ) f(x) f(x)的单调区间;

(2)若曲线 y = f ( x ) y=f(x) y=f(x)与直线 y = 1 y=1 y=1有且仅有两个交点,求 a a a的范围。

(2021-全国乙卷)

20. 20. 20. ( 12 (12 (12 ) ) )

设函数 f ( x ) = l n ( a − x ) f(x)=ln(a-x) f(x)=ln(ax),已知 x = 0 x=0 x=0是函数 y = x f ( x ) y=xf(x) y=xf(x)的极值点.

(1)求 a a a

(2)设函数 g ( x ) = x + f ( x ) x f ( x ) g(x)=\frac{x+f(x)}{xf(x)} g(x)=xf(x)x+f(x),证明: g ( x ) < 1 g(x)<1 g(x)<1

(2021-新高考I卷)

22. 22. 22. ( 12 (12 (12 ) ) )

已知函数 f ( x ) = x ( 1 − l n x ) f(x)=x(1-lnx) f(x)=x(1lnx)

(1)讨论 f ( x ) f(x) f(x)的单调性;

(2)设 a , b a,b a,b为两个不等的正数,且 b l n a − a l n b = a − b blna-alnb=a-b blnaalnb=ab

证明:
2 < 1 a + 1 b < e 2<\frac{1}{a}+\frac{1}{b}<e 2<a1+b1<e

(2021-新高考II卷)

22. 22. 22.已知函数 f ( x ) = ( x − 1 ) e x − a x 2 + b f(x)=(x-1)e^x-ax^2+b f(x)=(x1)exax2+b

(1)讨论 f ( x ) f(x) f(x)的单调性;

(2)从下面条件中任选一个,证明: f ( x ) f(x) f(x)有一个零点
① 1 2 < a ≤ e 2 2 , b > 2 a ② 0 < a < 1 2 , b ≤ 2 a \begin{aligned} &①\frac{1}{2}<a\leq\frac{e^2}{2},b>2a\\ &②0<a<\frac{1}{2},b\leq2a \end{aligned} 21<a2e2,b>2a②0<a<21,b2a

(2021-北京卷)

19. 19. 19.已知函数 f ( x ) = 3 − 2 x x 2 + a . f(x)=\frac{3-2x}{x^2+a}. f(x)=x2+a32x.

(1)若 a = 0 a=0 a=0,求 y = f ( x ) y=f(x) y=f(x) ( 1 , f ( 1 ) ) (1,f(1)) (1,f(1))处的切线方程;

(2)若函数 f ( x ) f(x) f(x) x = − 1 x=-1 x=1处取得极值,求 f ( x ) f(x) f(x)的单调区间,以及最大值和最小值.

(2021-天津卷)

20. 20. 20.(本小题满分 16 16 16分)

已知 a > 0 a>0 a>0,函数 f ( x ) = a x − x e x f(x)=ax-xe^x f(x)=axxex

( Ⅰ ) (Ⅰ) ()求曲线 y = f ( x ) y=f(x) y=f(x)在点 ( 0 , f ( 0 ) ) (0,f(0)) (0,f(0))处的切线方程;

( Ⅱ ) (Ⅱ) ()证明 f ( x ) f(x) f(x)存在唯一的极值点;

( Ⅲ ) (Ⅲ) ()若存在 a a a,使得 f ( x ) ≤ a + b f(x)\leq a+b f(x)a+b对于 ∀ x ∈ R \forall x\in R xR成立,求实数 b b b的取值范围

【3】2020年度真题集

(2020-全国I卷)

21. 21. 21. ( 12 (12 (12 ) ) )

已知函数 f ( x ) = e x + a x 2 − x f(x)=e^x+ax^2-x f(x)=ex+ax2x

(1)当 a = 1 a=1 a=1时,讨论 f ( x ) f(x) f(x)的单调性;

(2)当 x ≥ 0 x\geq0 x0时, f ( x ) ≥ 1 2 x 3 + 1 f(x)\geq\frac{1}{2}x^3+1 f(x)21x3+1,求 a a a的取值范围.

(2020-全国II卷)

21. 21. 21. ( 12 (12 (12 ) ) )

已知函数 f ( x ) = sin ⁡ 2 x sin ⁡ 2 x f(x)=\sin^2x\sin2x f(x)=sin2xsin2x.

(1)讨论 f ( x ) f(x) f(x)在区间 ( 0 , π ) (0,\pi) (0,π)的单调性;

(2)证明: ∣ f ( x ) ∣ ≤ 3 3 8 \lvert f(x)\rvert\leq \frac{3\sqrt3}{8} f(x)∣833

(3)设 n ∈ N ∗ n\in N^* nN,证明:
sin ⁡ 2 x ⋅ sin ⁡ 2 2 x ⋅ sin ⁡ 2 4 x . . . ⋅ sin ⁡ 2 2 n x ≤ 3 n 4 n \sin^2x\cdot \sin^22x\cdot \sin^24x...\cdot \sin^22^nx\leq \frac{3^n}{4^n} sin2xsin22xsin24x...sin22nx4n3n

(2020-全国III卷)

21. 21. 21. ( 12 (12 (12 ) ) )

设函数 f ( x ) = x 3 + b x + c f(x)=x^3+bx+c f(x)=x3+bx+c,曲线 y = f ( x ) y=f(x) y=f(x)在点 ( 1 2 , f ( 1 2 ) ) (\frac1 2,f(\frac 1 2)) (21,f(21))处的切线与 y y y轴垂直.

(1)求 b b b.

(2)若 f ( x ) f(x) f(x)有一个绝对值不大于 1 1 1的零点,证明: f ( x ) f(x) f(x)所有零点的绝对值不大于 1 1 1

(2020-新高考I卷)

21. 21. 21.

已知函数 f ( x ) = a e x − 1 − l n x + l n a f(x)=ae^{x-1}-lnx+lna f(x)=aex1lnx+lna

(1)当 a = e a=e a=e时,求曲线 y = f ( x ) y=f(x) y=f(x)在点 ( 1 , f ( 1 ) ) (1,f(1)) (1,f(1))处的切线与两坐标围成的三角形的面积;

(2)若 f ( x ) ≥ 1 f(x)\geq1 f(x)1,求 a a a的取值范围.

(2020-新高考II卷)

与新高考I卷题目一样。

【4】2019年度真题集

(2019-全国I卷)

20. 20. 20. ( 12 (12 (12 ) ) )

已知函数 f ( x ) = s i n x − l n ( 1 + x ) f(x)=sinx-ln(1+x) f(x)=sinxln(1+x),求证:

(1) f ′ ( x ) f'(x) f(x)在区间 ( − 1 , π 2 ) (-1,\frac{\pi}{2}) (1,2π)存在唯一极大值点;

(2) f ( x ) f(x) f(x)有且仅有 2 2 2个零点.

(2019-全国II卷)

20. 20. 20. ( 12 (12 (12 ) ) )

已知函数 f ( x ) = l n x − x + 1 x − 1 f(x)=lnx-\frac{x+1}{x-1} f(x)=lnxx1x+1

(1)讨论 f ( x ) f(x) f(x)的单调性,并证明 f ( x ) f(x) f(x)有且仅有 2 2 2个零点;

(2)设 x 0 x_0 x0 f ( x ) f(x) f(x)的一个零点,证明:

曲线 y = l n x y=lnx y=lnx在点 A ( x 0 , l n x 0 ) A(x_0,lnx_0) A(x0,lnx0)处的切线也是曲线 y = e x y=e^x y=ex的切线。

(2019-全国III卷)

20. 20. 20. ( 12 (12 (12 ) ) )

已知函数 f ( x ) = 2 x 3 − a x 2 + b f(x)=2x^3-ax^2+b f(x)=2x3ax2+b

(1)讨论 f ( x ) f(x) f(x)的单调性;

(2)是否存在 a , b a,b a,b,使得 f ( x ) f(x) f(x)在区间 [ 0 , 1 ] [0,1] [0,1]的最小值为 − 1 -1 1且最大值为 1 1 1

若存在,求出 a , b a,b a,b所有可能值;若不存在,说明理由.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

指针常量

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值