导数大题练习(2023年高考真题)

已知函数 f ( x ) = a ( e x + a ) − x f(x)=a(e^x+a)-x f(x)=a(ex+a)x
(1)讨论 f ( x ) f(x) f(x)的单调性
(2)证明:当 a > 0 a>0 a>0时,求证: f ( x ) > 2 ln ⁡ a + 3 2 f(x)>2\ln a+\dfrac 32 f(x)>2lna+23

解:
\quad (1) f ′ ( x ) = a e x − 1 f'(x)=ae^x-1 f(x)=aex1

\qquad a > 0 a>0 a>0时, x = − ln ⁡ a x=-\ln a x=lna f ′ ( x ) = 0 f'(x)=0 f(x)=0

f ( x ) \qquad f(x) f(x) [ − ln ⁡ a , + ∞ ) [-\ln a,+\infty) [lna,+)上单调递增,在 ( − ∞ , − ln ⁡ a ] (-\infty,-\ln a] (,lna]上单调递减

\qquad a ≤ 0 a\leq 0 a0时, f ( x ) f(x) f(x) ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)上单调递减

\quad (2)由(1)得 x = − ln ⁡ a x=-\ln a x=lna f ( x ) f(x) f(x)取最小值

\qquad 题目即证 f ( − ln ⁡ a ) > 2 ln ⁡ a + 3 2 f(-\ln a)>2\ln a+\dfrac 32 f(lna)>2lna+23

\qquad 1 + a 2 + ln ⁡ a > 2 ln ⁡ a + 3 2 1+a^2+\ln a>2\ln a+\dfrac 32 1+a2+lna>2lna+23 a 2 − ln ⁡ a − 1 2 > 0 a^2-\ln a-\dfrac 12>0 a2lna21>0

\qquad g ( a ) = a 2 − ln ⁡ a − 1 2 g(a)=a^2-\ln a-\dfrac 12 g(a)=a2lna21,则 g ′ ( a ) = 2 a − 1 a g'(a)=2a-\dfrac 1a g(a)=2aa1

\qquad a = 2 2 a=\dfrac{\sqrt 2}{2} a=22 g ′ ( a ) = 0 g'(a)=0 g(a)=0

g ( a ) \qquad g(a) g(a) [ 2 2 , + ∞ ) [\dfrac{\sqrt 2}{2},+\infty) [22 ,+)上单调递增,在 ( − ∞ , 2 2 ] (-\infty,\dfrac{\sqrt 2}{2}] (,22 ]上单调递减

\qquad 所以 g ( a ) ≥ g ( 2 2 ) = − ln ⁡ 2 2 = ln ⁡ 2 > 0 g(a)\geq g(\dfrac{\sqrt 2}{2})=-\ln\dfrac{\sqrt 2}{2}=\ln\sqrt 2>0 g(a)g(22 )=ln22 =ln2 >0

\qquad a 2 − ln ⁡ a − 1 2 > 0 a^2-\ln a-\dfrac 12>0 a2lna21>0

\qquad 得证 f ( x ) > 2 ln ⁡ a + 3 2 f(x)>2\ln a+\dfrac 32 f(x)>2lna+23

<think>嗯,用户问的是如何高效复习高考数学。这个问题挺常见的,毕竟高考对很多学生来说太重要了。首先,我需要回忆一下自己以前复习的方法,或者看过的资料里有没有什么有效的策略。用户可能是个高三学生,时间紧迫,需要高效的复习计划,而不是泛泛而谈。 首先,得明确高考数学的考点和考试大纲,对吧?因为不同地区的考点可能略有不同,但大体上应该包括代数、几何、函数、概率统计这些模块。所以复习的第一步应该是系统梳理知识体系,确保没有遗漏。这时候可能需要分模块复习,每个模块的重点和常考题型是什么,用户可能不太清楚,需要详细说明。 然后是错题整理,这个很多老师都会强调。但具体怎么做错题本呢?可能不是所有的错题都要记,而是分类整理,找出自己的薄弱点。比如,函数与导数部分经常出错,那就要针对性练习。另外,错题分析要深入,不能只停留在改答案,而是找出错误原因,避免重复犯错。用户可能已经有一些错题本,但不知道如何有效利用,所以需要给出具体的方法。 接下来是真题训练。高考真题的重要性不言而喻,但如何高效使用呢?可能建议用户按份和题型分类练习,特别是近五真题,要反复做,分析出题规律。模拟考试环境也很重要,定时做题,培养考试节奏。这里可能需要提醒用户注意时间管理,比如选择题和填空题的时间分配,大题如何分步得分。 专题突破部分,用户可能在某些难点上卡住,比如解析几何或导数压轴题。这时候需要针对这些专题进行强化训练,总结解题思路和技巧。比如导数中的参数讨论、构造函数方法,或者几何中的坐标系选取和几何性质应用。这部分需要具体例子,但用户可能只需要方法指导,所以给出策略即可。 然后是答题技巧,比如选择题的排除法、特殊值法,填空题的简化计算,解答题的步骤分。这些技巧能帮助用户在考试中节省时间,提高正确率。用户可能在考试中因为步骤不完整而丢分,所以强调步骤的规范性很重要。 心态调整和作息安排也是关键。很多学生考前焦虑,影响发挥。建议合理安排复习和休息时间,保证充足睡眠,适当运动。心理暗示和模拟考试可以帮助适应考试压力。用户可能在高压下效率低下,所以这部分建议能帮助他们调整状态。 最后,提醒用户注意复习中的常见误区,比如一味刷题不总结,忽视基础,或者过度钻研偏题。要回归课本,确保基础题和中档题的正确率,毕竟这些占分比例大。用户可能花了太多时间在难题上,反而忽略了基础,导致失分。 总结起来,高效复习需要系统梳理、错题分析、真题训练、专题突破、技巧提升和心态调整相结合。要分阶段制定计划,每天有明确的目标,逐步推进。用户可能需要一个具体的计划范例,但考虑到个体差异,还是提供通用策略更合适。同时,保持积极心态,相信自己的努力会有回报,这对考生来说也很重要。</think>高考数学高效复习需要系统规划、精准突破和科学方法相结合。以下分阶段提供具体策略,帮助学生提升复习效率: **一、知识体系梳理(1-2周)** 1. **模块化整理** 将数学知识划分为6大模块: $$代数(30\%) \quad 几何(25\%) \quad 函数与导数(20\%) \quad 概率统计(15\%) \quad 向量与复数(7\%) \quad 数学建模(3\%)$$ 建议制作思维导图,例如函数模块可细分为: $$函数概念 \rightarrow 基本初等函数 \rightarrow 函数性质 \rightarrow 函数应用$$ 2. **公式定理通关** 建立公式速查手册,重点掌握高频公式: - 三角函数和差化积公式:$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$ - 导数公式:$$(e^x)' = e^x,\quad (\ln x)' = \frac{1}{x}$$ 每天抽10分钟默写关键公式 **二、错题攻坚策略(持续进行)** 1. **错题分类管理** 按错误类型建立三色标记系统: - 红色:概念性错误(如混淆椭圆与双曲线定义) - 蓝色:计算失误(如符号错误、公式代错) - 绿色:思路卡壳(如无法建立几何代数联系) 2. **典型错题改造** 例:原题「已知$f(x)=x^2-2ax+3$在$[1,3]$上的最小值,求a取值范围」 改造方向: - 参数位置变化:改为$f(x)=ax^2-2x+3$ - 区间变化:改为$[-1,2]$ - 最值类型:求最大值 **三、真题深度解析(3-4周)** 1. **十真题大数据分析** 整理近十考点分布表: | 份 | 立体几何 | 导数应用 | 概率统计 | |------|---------|---------|---------| | 2023 | 12分 | 17分 | 15分 | | 2022 | 10分 | 18分 | 16分 | 2. **压轴题拆解模板** 以导数压轴题为例: $$ \begin{cases} 求导分析单调性 \\ 找极值点/拐点 \\ 构造辅助函数 \\ 参数分离讨论 \\ 结合不等式证明 \end{cases} $$ 建议每天限时(30分钟)攻克1道压轴题 **四、考场时间优化(考前2周)** 1. **黄金时间分配** - 选填题:40分钟(每题平均2分钟) - 前4道大题:45分钟 - 压轴题:25分钟 - 检查:10分钟 2. **应急得分技巧** - 选择题特殊值法:当$a=1$时验证选项 - 几何题快速建系:找不到几何关系时用坐标系 - 概率题分步列式:即使算错也有步骤分 **五、心理状态调节** 1. **模拟考试训练** 每周进行2次全真模拟,建议时间: - 上午9:00-11:30(与高考同步) - 使用标准答题卡 - 考后立即对照评分标准自评 2. **压力管理技巧** - 呼吸调节法:4-7-8呼吸(吸气4秒,屏息7秒,呼气8秒) - 积极心理暗示:考试时默念「我已经做过类似题目」 **常见误区警示:** 1. × 盲目刷题不总结 2. × 忽视教材课后习题(近有20%题目改编自课本) 3. × 过度追求偏难怪题 4. × 考前突击改变作息 建议每天保持: - 2小时专题突破 - 1小时错题重做 - 30分钟公式记忆 - 保证7小时睡眠 记住:高考数学是「熟练者的游戏」,通过科学训练,完全可以在现有水平上再提升30-50分。最后阶段要相信量变终将引发质变,坚持到底就是胜利!
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值