融入选择性卷积核的胶囊网络图像分类方法

文章提出了一种结合选择性卷积核的胶囊网络模型,用于提高图像分类的准确性。该模型在传统胶囊网络的基础上,融入了具有两个分支的选择性卷积核网络,能够提取更丰富、准确的图像特征。实验结果表明,相比于基线胶囊网络,新模型在CIFAR-10、Fashion-MNIST和SVHN数据集上的识别精度有显著提升,特别是在CIFAR-10上提高了1.73%。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

传统卷积神经网络对空间信息不敏感,无法学习到不同特征间相对位置的关系,且每一层神经元的感受野被设计为相同大小,导致提取的图像特征信息不够精确。针对这些问题,提出一种选择性卷积核胶囊网络用于图像分类任务。在经典胶囊网络的卷积层融入具有两个分支的选择性卷积核网络,以提取更为丰富、准确的图像特征信息,提高图像分类准确率。采用CIFAR-10、Fashion-MNIST、SVHN经典图像分类数据集进行实验,结果表明,相比于基线胶囊网络模型,新模型的识别精度更高,尤其在CIFAR-10数据集上识别精度提高了1.73%,从而有效提升了图像分类准确率,具有良好的图像识别能力。

引言

图像分类是计算机视觉领域的一个重要研究方向[1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

罗伯特之技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值