基于告警关联的“互联网”多步攻击意图识别方法

本文提出一种基于告警关联的多步攻击意图识别方法,通过挖掘告警数据的关联性还原攻击序列,结合基础设施重要性和漏洞威胁评估攻击者意图。实验表明,该方法在DARPA2000数据集上验证了对特定网络攻击的识别能力,提高了识别准确性,尤其在解决虚假攻击问题上表现突出。
摘要由CSDN通过智能技术生成

【摘  要】针对现有静态评估的漏洞威胁技术不能有效量化网络攻击危害的问题,提出一种基于告警关联的多步攻击意图识别方法。该方法通过告警数据的关联特点挖掘并还原攻击者的多步攻击序列,围绕攻击过程评估基础设施重要性和漏洞威胁探测攻击者意图,从而实现还原攻击场景、刻画攻击行为的目的。实验表明,与传统算法进行对比分析,在DARPA2000上验证了该算法对特定网络攻击场景的识别能力,且百分误差绝对值和均方误差绝对值均低于传统算法。由此可知,文中所述的结合漏洞威胁和基础设施重要性来关联攻击步骤能够有效解决攻击过程出现的虚假攻击问题,提升了网络多步攻击意图识别的准确性。

【关键词】告警关联;多步攻击;基础设施重要性;漏洞威胁评估

0   引言

对告警数据进行关联的手段可分为聚合关联(同类、相似的告警数据之间的关联)和多步关联(根据告警数据的序列实现不同攻击步骤之间的关联)。而多步关联能够实现攻击场景重建和发现攻击者的多步攻击意图,有利于网络管理者对网络攻击进行事前预防。所谓攻击意图识别是通过对现有的告警数据进行关联后预测攻击者的后续行动,从而为制定正确的安全防御措施提供决策支持。当前有很多研究者对告警数据关联进行了相关的研究,包括:Hata等人[1]提出了一种基于贝叶斯网络的电信网络告警关联方法,该方法通过使用基于警报生成时间、生成地点和警报类

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

罗伯特之技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值