摘要:
基于内生人工智能(AI, artificial intelligence)在大规模复杂异构网络中实现万物智联是6G的重要特征之一。联邦学习(FL, federated learning)因其数据处理本地化这一特有的机器学习架构,被认为是在6G场景中实现分布式泛在智联的重要途径,已成为6G的重要研究方向。为此,首先分析了在未来6G,特别是物联网(IoT, internet of things)场景中引入分布式AI的必要性,以此为基础论述了FL在满足相关6G指标要求的潜力,并从架构设计、资源利用、数据传输、隐私保护、服务提供角度综述了FL如何赋能6G网络,最后给出了FL赋能6G研究存在的一些关键挑战和未来有价值的研究方向。
关键词: 6G网络 ; 物联网 ; 人工智能 ; 联邦学习
0 引言
近年来全球多个国家和地区已开启探索研究6G,旨在充分利用“高-中-低”全频谱资源,构建跨地域、空域、海域全面覆盖的超灵活一体化网络架构,满足可靠安全的“人-机-物”智能连接需求。6G网络相关报告提出要在新一代信息技术的加持下,赋予网络设备和节点信息感知能力和计算处理能力,实现网络内生智能;同时6G网络将逐步从基站的超密集部署向边缘计算设备的海量分布式部署演进,以上两点都需要更先进的分布式AI技术支持。然而,在未来6G业务场景中,数据通常存储在海量边缘设备中,数据