摘要
随着生成式人工智能技术的发展,许多领域都得到了帮助与发展,但与此同时虚假信息的构建与传播变得更加简单,虚假信息的检测也随之难度增加. 先前的工作主要聚焦于语法问题、内容煽动性等方面的特点,利用深度学习模型对虚假新闻内容进行建模. 这样的方式不仅缺乏对内容本身的判断,还无法回溯模型的判别原因.
本文针对上述问题提出一种基于大语言模型隐含语义增强的细粒度虚假新闻检测方法. 该方法充分挖掘并利用了现有的生成式大语言模型所具有的总结与推理能力,按照主干事件、细粒度次要事件和隐含信息推理的顺序进行层级式推导,逐步判别新闻的真实性. 通过分解任务的方式,该方法最大程度发挥了模型的能力,提高了对虚假新闻的捕获能力,同时该方法也具有一定的可解释性,能够为检测提供判别依据.
主要贡献
1.提出了一种基于大语言模型隐含语义增强的细粒度虚假新闻检测方法,可以依靠大语言模型能力通过3个分支设计去对新闻内容中不同的3个角度进行有效建模来捕获虚假新闻,发挥了大语言模型的抽取与推理能力,解决其零样本推理结果不理想与外部信息获取受限的问题,从而提升了整体性能.
2.提出了通过将新闻内容划分为主干事件、若干细粒度次要事件,并且进一步推导得到背后隐含信息的技术框架,为虚假新闻判别提供了更丰富的视角.
3.在真