基于主成分分析的液流电池状态估计策略研究

该研究提出了一种基于主成分分析(PCA)的锌溴液流电池荷电状态(SOC)估计方法,旨在解决放电后期电压拐点引起的辨识精度问题。PCA通过数据降维和特征提取,改善了电压拐点处的电池SOC辨识精度,为锌溴液流电池的长时储能应用提供了理论支持。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘  要

为克服放电后期电压拐点对锌溴液流电池(ZBFB)荷电状态(SOC)辨识精度的影响,研究基于主成分分析(PCA)的锌溴液流电池荷电状态估计方法。以提高锌溴液流电池SOC参数辨识精度为目标,特别是解决锌溴液流电池在放电后期特有的电压拐点非线性特性,在兼顾实际算力限制与运行速率要求的条件下,对锌溴液流电池SOC参数辨识算法进行分析。研究结果表明,所提方法兼顾空间维度特征提取以及系统降维建模,可有效改善电压拐点处的电池SOC的辨识精度,为锌溴液流电池的长时储能应用提供理论与算法分析基础。

   0 1   

 概   述

目前锌溴液流电池(Zinc Bromine Flow Battery,ZBFB)以其高可靠性、长寿命在长时储能领域得到初步应用。锌溴液流电池本身存在电压急剧变化的拐点以及电解液的不规则流动,使得锌溴液流电池荷电状态(State of Charge,SOC)参数模型具有很强的非线性,具体表现为存在大量对SOC辨识产生影响的扰动参数,特别是放电后期电压拐点导致采样失真,使得开路电压与安时积分等常规方法难以被直接应用,而SOC又是影响ZBFB优化控制的基础参数。因此研究一种可满足ZBFB放电后期电压拐点处SOC辨识与校正的方法势在必行。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

罗伯特之技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值