结合全局注意力机制的实时语义分割网络

针对轻量化网络结构的语义分割问题,本文提出GaSeNet网络,结合全局注意力机制和混合空洞卷积。全局注意力在通道和空间维度增强特征交互,混合空洞卷积则扩大感受野,提取多尺度细节信息。特征融合模块通过深度聚合金塔池化提高分割精度。实验表明,GaSeNet在CamVid和Vaihingen数据集上分割精度分别提高4.29%和16.06%。
摘要由CSDN通过智能技术生成

摘要: 针对轻量化网络结构从特征图提取有效语义信息不足,以及语义信息与空间细节信息融合模块设计不合理而导致分割精度降低的问题,本文提出一种结合全局注意力机制的实时语义分割网络(global attention mechanism with real time semantic segmentation network ,GaSeNet)。首先在双分支结构的语义分支中引入全局注意力机制,在通道与空间两个维度引导卷积神经网来关注与分割任务相关的语义类别,以提取更多有效语义信息;其次在空间细节分支设计混合空洞卷积块,在卷积核大小不变的情况下扩大感受野,以获取更多全局空间细节信息,弥补关键特征信息损失。然后重新设计特征融合模块,引入深度聚合金塔池化,将不同尺度的特征图深度融合,从而提高网络的语义分割性能。最后将所提出的方法在CamVid数据集和Vaihingen数据集上进行实验,通过与最新的语义分割方法对比分析可知,GaSeNet在分割精度上分别提高了4.29%、16.06%,实验结果验证了本文方法处理实时语义分割问题的有效性。

  • 关键词: 
  • 实时语义分割  /  
  • 全局注意力机制  /  
  • 多尺度特征融合  /  
  • 混合空洞卷积  /  
  • 卷积神经网络  /  
  • 金字塔池化  /  
  • 感受野  /  
  • 特征提取  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

罗伯特之技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值