R语言fpc包的dbscan函数对数据进行密度聚类分析、plot函数可视化聚类图
目录
R语言fpc包的dbscan函数对数据进行密度聚类分析、plot函数可视化聚类图
R语言fpc包的dbscan函数对数据进行密度聚类分析、plot函数可视化聚类图
密度聚类
基于密度的聚类方法以数据集在空间分布上的稠密程度为依据进行聚类,无需预先设定簇的数量,特别适合对于未知内容的数据集进行聚类。
密度聚类方法的基本思想是:只要一个区域中的点的密度大于某个域值,就把它加到与之相近的聚类中去,对于簇中每个对象,在给定的半径ε的邻域中至少要包含最小数目(MinPts)个对象。
这类算法能克服基于距离的算法只能发现“类圆形”的聚类的缺点,可发现任意形状的聚类,且对噪声数据不敏感。
DBSCAN算法将数据集定义为高密度的连续区域,下面是它的工作原理:
对于每个实