R语言fpc包的dbscan函数对数据进行密度聚类分析、plot函数可视化聚类图

本文介绍了使用R语言fpc包的dbscan函数进行密度聚类分析,以及如何利用plot函数可视化聚类结果。通过DBSCAN算法,可以对任意形状的聚类进行有效识别,并对噪声数据具有良好的抵抗能力。文中还展示了数据导入、仿真数据处理和实际应用在鸢尾花数据集上的例子。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R语言fpc包的dbscan函数对数据进行密度聚类分析、plot函数可视化聚类图

目录

R语言fpc包的dbscan函数对数据进行密度聚类分析、plot函数可视化聚类图

密度聚类

导入包和仿真数据

 R语言fpc包的dbscan函数对数据进行密度聚类分析、plot函数可视化聚类图


密度聚类

基于密度的聚类方法以数据集在空间分布上的稠密程度为依据进行聚类,无需预先设定簇的数量,特别适合对于未知内容的数据集进行聚类。
密度聚类方法的基本思想是:只要一个区域中的点的密度大于某个域值,就把它加到与之相近的聚类中去,对于簇中每个对象,在给定的半径ε的邻域中至少要包含最小数目(MinPts)个对象。
这类算法能克服基于距离的算法只能发现“类圆形”的聚类的缺点,可发现任意形状的聚类,且对噪声数据不敏感。

DBSCAN算法将数据集定义为高密度的连续区域,下面是它的工作原理:

对于每个实

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

statistics.insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值