R语言使用randomForest包的randomForest函数拟合随机森林二分类模型、使用predict函数和训练好的二分类模型进行预测推理、confusionMatrix函数输出二分类混淆矩阵

本文介绍了如何使用R语言的randomForest包建立随机森林二分类模型,并通过predict函数进行预测推理。同时,利用confusionMatrix输出混淆矩阵,详细分析了包括PPV、NPV、特异度、敏感度等在内的多种评估指标。

 

R语言使用randomForest包的randomForest函数拟合随机森林二分类模型、使用predict函数和训练好的二分类模型进行预测推理、confusionMatrix函数输出二分类混淆矩阵(包含许多衍生指标、PPV、NPV、特异度、敏感度、p值等)

目录

R语言使用randomForest包的randomForest函数拟合随机森林二分类模型、使用predict函数和训练好的二分类模型进行预测推理、confusionMatrix函数输出二分类混淆矩阵(包含许多衍生指标、PPV、NPV、特异度、敏感度、p值等)

分类模型

导入包和框架

R语言使用randomForest包的ra

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

statistics.insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值