Excel for Finance 07 `FV PV` 函数

Excel 的 FV 函数用于计算一笔投资在未来的价值,基于固定的利率和定期付款。这是一个金融函数,常用来分析储蓄计划、贷款、或投资的增长。


语法:

FV(rate, nper, pmt, [pv], [type])
参数说明:
  1. rate(必需):

    • 每期的利率。
    • 如果是年利率,需要根据期数调整,例如月度利率 = 年利率 ÷ 12。
  2. nper(必需):

    • 总期数,表示投资或贷款的付款次数。
    • 例如,每月存款 5 年,nper = 5 × 12
  3. pmt(必需):

    • 每期固定付款金额。
    • 如果是存款,通常为正数;如果是贷款,通常为负数。
  4. pv(可选):

    • 投资或贷款的当前价值(现值)。
    • 默认值为 0
  5. type(可选):

    • 指定付款时间:
      • 0(默认):期末付款。
      • 1:期初付款。
返回值:
  • 返回的是投资或贷款的未来价值。

示例:

1. 计算期末的存款总额:

假设每月存款 500 元,年利率为 5%,存款 5 年,每月存一次(期末存款)。

=FV(5%/12, 5*12, -500, 0, 0)
  • rate = 5%/12(月利率)。
  • nper = 5*12(总期数 60)。
  • pmt = -500(每月存款,负数表示支出)。
  • pv = 0(无初始投资)。
  • type = 0(期末存款)。

结果:约 34,483 元


2. 计算贷款的未来价值:

如果贷款 10,000 元,每月还款 300 元,年利率为 6%,贷款期为 3 年,付款在期初。

=FV(6%/12, 3*12, 300, -10000, 1)
  • rate = 6%/12(月利率)。
  • nper = 3*12(总期数 36)。
  • pmt = 300(每月还款)。
  • pv = -10000(贷款金额,负数表示借入)。
  • type = 1(期初付款)。

结果:约 1,403 元(贷款仍有余额未还清)。


3. 计算单笔投资的未来价值:

一次性投资 50,000 元,年利率为 8%,10 年后查看其未来价值。

=FV(8%, 10, 0, -50000, 0)
  • rate = 8%(年利率)。
  • nper = 10(总期数)。
  • pmt = 0(无定期付款)。
  • pv = -50000(初始投资)。
  • type = 0(期末计算)。

结果:约 107,946 元


注意事项:

  1. 正负数区分

    • 支出用负数表示,收入用正数表示,pmtpv 的符号必须与实际情况一致。
  2. 利率的单位一致性

    • 如果是月度投资,rate 应为月利率;如果是年度投资,rate 应为年利率。
  3. 定期付款和单次付款的区别

    • 定期付款:通过 pmt 参数设置。
    • 单次付款:通过 pv 参数设置。

应用场景:

  1. 储蓄目标

    • 计算达到某个存款目标需要多久或每期存多少。
  2. 贷款分析

    • 计算贷款余额或还款总额。
  3. 投资计划

    • 预测一笔投资在未来的增长情况。

FV 函数是财务管理和规划的重要工具,通过它可以轻松分析投资或贷款的未来价值。

在这里插入图片描述

Excel 中的 PV 函数用于计算某项投资或贷款的现值(Present Value),即未来现金流(付款或收入)的当前价值。它可以帮助您根据固定利率和定期付款,估算一项投资或贷款今天的价值。


语法:

PV(rate, nper, pmt, [fv], [type])
参数说明:
  1. rate(必需):

    • 每期的利率。
    • 如果是年利率,但付款频率是按月,则需要将年利率转换为月利率,例如 rate = 年利率 / 12
  2. nper(必需):

    • 总期数,表示投资或贷款的付款次数。
  3. pmt(必需):

    • 每期的固定付款金额(或收款金额)。
    • 对于贷款,是每期支付的金额,通常为负数;对于存款,是每期收到的金额,通常为正数。
  4. fv(可选):

    • 未来值,即在最后一期付款后的目标余额。
    • 如果省略,默认为 0
  5. type(可选):

    • 指定付款时间:
      • 0(默认):期末付款。
      • 1:期初付款。
返回值:
  • 返回的是投资或贷款的现值,通常以负数表示,因为它代表初始支出。

示例:

1. 计算贷款的现值:

假设每月还款 500 元,年利率为 5%,还款期限为 5 年,期末无余额。

=PV(5%/12, 5*12, -500, 0, 0)
  • rate = 5%/12(月利率)。
  • nper = 5*12(总期数 60)。
  • pmt = -500(每月还款,负数表示支出)。
  • fv = 0(贷款最终无余额)。
  • type = 0(期末付款)。

结果:贷款的现值为 26,322 元


2. 计算定期存款的现值:

假设每年存款 10,000 元,年利率为 3%,存款 10 年,目标余额为 150,000 元。

=PV(3%, 10, -10000, 150000, 0)
  • rate = 3%(年利率)。
  • nper = 10(总期数)。
  • pmt = -10000(每年存款,负数表示支出)。
  • fv = 150000(目标余额)。
  • type = 0(期末存款)。

结果:投资现值为 77,960 元


3. 计算单次投资的现值:

如果目标是未来 5 年后获得 100,000 元,年利率为 6%,一次性投资的现值是多少?

=PV(6%, 5, 0, -100000, 0)
  • rate = 6%(年利率)。
  • nper = 5(总期数)。
  • pmt = 0(无定期付款)。
  • fv = -100000(未来目标金额,负数表示收益)。
  • type = 0(期末计算)。

结果:现值为 74,725 元


注意事项:

  1. 正负数的含义

    • 付款用负数表示(如贷款还款)。
    • 收款用正数表示(如投资收益)。
  2. 利率和期数的单位一致性

    • 如果是月度付款,利率必须是月利率,期数也必须是月数。
  3. 未来值(fv)的影响

    • 如果 fv 不为零,则表示除了定期付款,还希望达到一个额外的目标金额。
  4. 期初与期末的区别

    • 如果付款发生在期初,结果会稍高,因为每期的付款或收款会有更多的时间产生利息。

应用场景:

  1. 贷款金额计算

    • 确定一个贷款计划的最大可借金额。
  2. 投资计划分析

    • 估算未来目标所需的当前投资金额。
  3. 财务规划

    • 比较不同投资或贷款计划的成本或收益。

PV 函数是财务分析中的核心工具,适用于各种与现值计算相关的情境,为投资或贷款决策提供重要支持。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值