启动
uvicorn main:app --reload
1. 一个基于 FastAPI 的翻译服务 API,主要功能包括提交翻译请求、查询翻译状态和结果
工作流程
- 用户通过 POST /translate 提交翻译请求
- 服务保存请求到数据库并启动后台任务
- 后台任务处理完成后更新数据库
- 用户可以通过 GET /translate/{id} 查询状态和结果
main.py
from fastapi import FastAPI, BackgroundTasks, HTTPException, Request, Depends
# Depends 的作用,依赖注入:FastAPI 的核心特性之一,允许你声明某个参数(如 db)需要由其他函数(如 get_db)提供。
from fastapi.responses import HTMLResponse
from fastapi.middleware.cors import CORSMiddleware
from fastapi.templating import Jinja2Templates
from sqlalchemy.orm import Session # 表示数据库会话对象,通过这个会话,可以执行数据库操作(如查询、插入、更新等)。
from schemas import TranslationRequestSchema
from typing import List
from utils import translate_text, process_translations
# db related
from database import engine, SessionLocal, get_db
import models
from models import TranslationRequest, TranslationResult, IndividualTranslations
# 创建数据库中所有定义的表结构
models.Base.metadata.create_all(engine)
app = FastAPI()
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Allows all origins
allow_credentials=True,
allow_methods=["*"], # Allows all methods
allow_headers=["*"], # Allows all headers
)
# 指定模板文件存放的目录(通常是项目下的 `templates` 文件夹)
templates = Jinja2Templates(directory="templates")
# 返回一个 HTML 页面 (index.html)
@app.get("/index", response_class=HTMLResponse)
def index(request: Request):
return templates.TemplateResponse(
"index.html", # 模板文件名(位于 `templates/` 下)
{"request": request} # 传递给模板的上下文数据
)
# FastAPI 的 TemplateResponse 要求上下文必须包含 request 对象,用于生成 URL
# 接收 POST 请求
@app.post("/translate")
async def translate(request: TranslationRequestSchema, background_tasks: BackgroundTasks, db: Session = Depends(get_db)):
print(request.text)
print(request.languages)
# 创建并保存翻译请求到数据库
request_data = models.TranslationRequest(
text=request.text,
languages=request.languages)
db.add(request_data)
db.commit()
db.refresh(request_data)
# print(f"Translation request submitted. ID: {request_data.id}") # 打印 ID 以确认是否正确生成
# 添加后台任务处理翻译
background_tasks.add_task(process_translations, request_data.id, request.text, request.languages)
# print("request_data: ", request_data)
return {"payload": request_data}
# 根据 request_id 查询翻译请求
@app.get("/translate/{request_id}")
async def get_translation_status(request_id: int, request: Request, db: Session = Depends(get_db)):
# 根据 request_id 从 TranslationRequest 表中获取一条记录
request_obj = db.query(TranslationRequest).filter(TranslationRequest.id == request_id).first() # 执行查询并返回第一条结果
if not request_obj:
raise HTTPException(status_code=404, detail="Request not found")
if request_obj.status == "in progress":
return {"status": request_obj.status}
translations = db.query(TranslationResult).filter(TranslationResult.request_id == request_id).all()
return templates.TemplateResponse(
"results.html",
{"request": request, "translations": translations}
)
2. 验证从前端(如 Web 或移动端)传入的数据是否符合预期格式
schemas.py
# Making sure the data coming from the frontend is valid
from pydantic import BaseModel
class TranslationRequestSchema(BaseModel):
text: str
languages: str
class Config:
schema_extra = {
"example": {
"text": "Hello, world!",
"languages": "english, german, russian"
}
}
# schema_extra:为 FastAPI 的自动文档(如 Swagger UI)提供示例数据。
# 效果:在 API 文档中会显示这个示例,帮助开发者理解如何构造请求体。
3. 配置数据库连接
database.py
import os
from dotenv import load_dotenv
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker
# sessionmaker:生成数据库会话(Session)的工厂。
load_dotenv()
SQLALCHEMY_DATABASE_URL = os.getenv("DATABASE_URL")
# DATABASE_URL:数据库连接字符串,格式通常为: "数据库类型://用户名:密码@主机:端口/数据库名"
engine = create_engine(SQLALCHEMY_DATABASE_URL, echo=True)
# create_engine:创建核心接口,用于管理数据库连接池。
# echo=True:调试模式下打印所有执行的 SQL 语句(生产环境应设为 False)。
SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)
# autocommit=False:禁用自动提交(需显式调用 commit())。
# autoflush=False:禁用自动刷新(避免意外刷新未完成的操作)。
# bind=engine:绑定到之前创建的引擎。
Base = declarative_base()
# 作用:为每个请求生成独立的数据库会话,并在请求结束后自动关闭。
def get_db():
db = SessionLocal()
try:
yield db # yield db:将会话提供给路由函数使用
finally:
db.close()
4. 定义三个SQLAlchemy数据库模型,并创建了对应的数据库表结构。这些模型用于管理一个翻译系统的数据存储。
models.py
# 定义三个数据库模型,并创建了对应的数据库表
from sqlalchemy import Column, Integer, String, DateTime, ForeignKey, JSON, create_engine
from sqlalchemy.ext.declarative import declarative_base
from datetime import datetime
import os
from dotenv import load_dotenv
load_dotenv()
SQLALCHEMY_DATABASE_URL = os.getenv("DATABASE_URL")
Base = declarative_base()
# 记录用户提交的翻译请求,包括原文、目标语言和状态
class TranslationRequest(Base):
__tablename__ = "translation_requests"
id = Column(Integer, primary_key=True, index=True)
text = Column(String, nullable=False)
languages = Column(String, nullable=False)
status = Column(String, default="in progress", nullable=False)
created_at = Column(DateTime, default=datetime.utcnow)
updated_at = Column(DateTime, default=datetime.utcnow, onupdate=datetime.utcnow)
# 存储每个请求的翻译结果(按语言拆分)
# 一个TranslationRequest可以对应多个TranslationResult
class TranslationResult(Base):
__tablename__ = "translation_results"
id = Column(Integer, primary_key=True, index=True)
# request_id: 外键,关联到TranslationRequest表的id
request_id = Column(Integer, ForeignKey("translation_requests.id"), nullable=False)
language = Column(String, nullable=False)
translated_text = Column(String, nullable=False)
created_at = Column(DateTime, default=datetime.utcnow)
class IndividualTranslations(Base):
__tablename__ = "individual_translations"
id = Column(Integer, primary_key=True, index=True)
request_id = Column(Integer, ForeignKey("translation_requests.id"), nullable=False)
translated_text = Column(String, nullable=False)
created_at = Column(DateTime, default=datetime.utcnow)
# to ensure tables are created in the database
engine = create_engine(SQLALCHEMY_DATABASE_URL)
Base.metadata.create_all(engine) # 在数据库中生成所有定义的表
5. 使用Google的Gemini AI模型进行文本翻译,并将结果存储到数据库中
utils.py
import google.generativeai as genai
from sqlalchemy.orm import Session
from models import TranslationRequest, TranslationResult, IndividualTranslations
from datetime import datetime
from database import get_db
from typing import List
import os
from dotenv import load_dotenv
load_dotenv()
GEMINI_API_KEY = os.getenv("GOOGLE_API_KEY")
async def translate_text(text: str, language: str) -> str:
# 设置 API Key
genai.configure(api_key=GEMINI_API_KEY)
model = genai.GenerativeModel("gemini-2.0-flash") # 选择 Gemini-Pro 模型
# 发送请求并获取响应
response = model.generate_content(f"Translate the following text to {language}: {text}. Only provide the translated text without any additional explanations or formatting")
return response.text.strip()
async def process_translations(request_id: int, text: str, languages: List[str]):
db = next(get_db()) # 获取数据库会话
try:
language_list = languages.split(", ")
for language in language_list:
translated_text = await translate_text(text, language)
# 将结果保存到两个表中
translation_result = TranslationResult(
request_id=request_id, language=language, translated_text=translated_text
)
individual_translation = IndividualTranslations(
request_id=request_id, translated_text=translated_text
)
db.add(translation_result)
db.add(individual_translation)
db.commit()
# 查询数据库,获取与 request_id 对应的翻译请求记录。
request = db.query(TranslationRequest).filter(TranslationRequest.id == request_id).first()
request.status = "completed"
request.updated_at = datetime.utcnow()
db.add(request)
db.commit()
finally:
db.close()
6. 实现一个多语言翻译服务的用户界面
index.html
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Translation Service</title>
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0/dist/css/bootstrap.min.css" rel="stylesheet">
<style>
body, html {
height: 100%;
margin: 0;
background-color: white;
display: flex;
flex-direction: column;
}
.content {
flex: 1;
}
.navbar {
background-color: #34568B;
}
.btn-primary {
background-color: #88B04B;
border-color: #88B04B;
}
.form-label {
color: #34568B;
}
.logo {
max-width: 30%;
height: auto;
padding: 20px;
}
.footer {
color: black;
text-align: center;
padding: 10px 0;
width: 100%;
}
.form-container {
display: flex;
justify-content: center;
align-items: center;
flex-direction: column;
height: 100%;
padding: 20px;
}
.form-box {
width: 100%;
max-width: 600px;
margin: 10px 0;
}
.btn-container {
text-align: center;
margin-top: 20px;
}
</style>
</head>
<body>
<nav class="navbar navbar-expand-lg navbar-dark">
<div class="container">
<a class="navbar-brand mx-auto" href="#">Multilingual Translation Service</a>
<div class="navbar-text text-light">
Powered by Google LLM Gemini 2.0
</div>
</div>
</nav>
<div class="content">
<div class="container form-container">
<!-- 翻译文本输入框 -->
<div class="form-box">
<label for="text" class="form-label">Text to Translate</label>
<textarea id="text" class="form-control" rows="10" placeholder="Enter text here..."></textarea>
</div>
<!-- 语言选择输入框 -->
<div class="form-box">
<label for="languages" class="form-label">Languages</label>
<input id="languages" class="form-control" type="text" placeholder="e.g., english, german, russian">
<small class="form-text text-muted">Write the languages you want to translate your text to, separated by commas.</small>
</div>
<!-- 提交按钮 -->
<div class="btn-container">
<button class="btn btn-primary" onclick="translateText()">Translate</button>
</div>
</div>
</div>
<script>
async function translateText() {
// Extract the text and languages from the form
var text_for_translation = document.getElementById('text').value;
var languages_chosen = document.getElementById('languages').value;
// Prepare the payload
var payload = {
text: text_for_translation,
languages: languages_chosen
};
try {
// Execute the POST request to the translation endpoint
const response = await fetch('http://localhost:8000/translate', {
method: 'POST',
headers: {
'Content-Type': 'application/json'
},
body: JSON.stringify(payload)
});
// Check if the response is OK
if (!response.ok) {
throw new Error(`HTTP error! Status: ${response.status}`);
}
// Parse and handle the response
const result = await response.json();
// alert('The result is: ' + result);
alert('Translation request submitted. ID: ' + result.payload.id);
window.location.href = '/translate/' + result.payload.id;
} catch (error) {
console.error('Error:', error);
alert('Failed to submit translation request.');
}
}
</script>
<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0/dist/js/bootstrap.bundle.min.js"></script>
</body>
</html>
7. 展示翻译结果
results.html
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
<title>Translation Results</title>
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0/dist/css/bootstrap.min.css" rel="stylesheet">
</head>
<body>
<!-- 深蓝色导航栏 -->
<nav class="navbar navbar-expand-lg navbar-dark" style="background-color: #34568B;">
<div class="container">
<a class="navbar-brand mx-auto" href="#">Multilingual Translation Results</a>
<div class="navbar-text text-light">
Powered by Google LLM Gemini 2.0
</div>
</div>
</nav>
<div class="container mt-4">
<h1>Translation Results</h1>
<div>
<!-- 循环遍历传入的translations列表 -->
{% for translation in translations %}
<!-- 每个翻译结果用卡片(card)展示 -->
<div class="card mb-3">
<!-- 卡片头部(card-header)显示目标语言 -->
<div class="card-header">
Language: {{ translation.language }}
</div>
<!-- 卡片正文(card-body)显示翻译内容 -->
<div class="card-body">
<p class="card-text">{{ translation.translated_text }}</p>
</div>
</div>
{% endfor %}
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0/dist/js/bootstrap.bundle.min.js"></script>
</body>
</html>
8. 数据库配置
DATABASE_URL = 'postgresql://postgres:password@localhost:5432/translationservice'
# DATABASE_URL:数据库连接字符串,格式通常为: "数据库类型://用户名:密码@主机:端口/数据库名"