[Python数据分析]Python可视化

文章介绍了Python中的几个主要可视化库,如matplotlib、seaborn和pyecharts,强调了matplotlib的易用性和表现力,并详细讲解了折线图的绘制以及plt绘图的面向函数和面向对象两种方式,包括Figure、Axes的概念和线型、颜色的控制。
摘要由CSDN通过智能技术生成

Python可视化工具:

  • matplotlib:在python数据可视化中具有相当老的资格
  • seaborn:基于matplotlib,能和pandas很好的配合,旨在简化python图的创建
  • ggplot:基于matplotlib,同seaborn类似,相对来讲,接口并不是很pythonic
  • bobkh:面向浏览器的可视化,目标是实现交互式的web可视化
  • pygal:用户创建svg格式的图形
  • plotly:属于分析和可视化的在线工具,有相应的python版本接口
  • pyecharts:echarts的python版本,属于百度开源产品,内容丰富,文档为中文

Matplotlib 特点和优势:

  • 使用简单,matplotlib作为老牌可视化工具,使用也极其简单
  • 可以使用渐进,交互式方式实现数据可视化
  • 表现能力强,对图像元素控制力强
  • 跟python配合紧密,特别是跟pandas等数据工具

折线图

  • 折线图是一种以变化的曲线用来反映数据变化的一种简单图例
  • 折线图是一种典型的直角坐标图,主要在一个平面上显示变化曲线
  • 折线图理论上是一系列形如(x,y)的坐标点,表达此类数据序列一般通过列表即可完成
  • 不同点之间的线由程序自动拟合连接

PLT绘图的两种方式:

  • 面向函数:plt.plot()
  • OOP:由一个个单独元素组成

PLT中OOP绘图方式:

  • Figure:是plt的画布,所有元素都在Figure上
  • Axes:这个可以理解成一个坐标系统,可以有多个
  • Axis:坐标轴,包括刻度线/刻度文本/坐标网格/坐标轴标题等
  • Artise:图像中的一个个具体元素,具体又可以细分为两类
    • 简单元素:一个简单的元素,不能再继续细分
    • 容器类型:由简单元素类型的Aritists构成的复杂Artist,例如Axes
  • 对于Figure配置属性,一般用set_xxx()
  • 添加Axes用add_axes()
  • 颜色的表示
    • 英文单词:color = 'red'
    • RGB:color = (1.0,0.4,0.3)
  • 线型的控制:
    • solid:实线,会用'-'做简写
    • dashed:虚线,用'--'做简写
    • dashdot:点划线,用'-.'简写
    • dotted:实现电线,用':'简写
  • 线的类型和宽度控制
    • 在构造函数或者绘图函数中使用参数linestyle和linewidth即可
    • 在Line2D的实例中使用add_xxx来进行添加即可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值