Python可视化工具:
- matplotlib:在python数据可视化中具有相当老的资格
- seaborn:基于matplotlib,能和pandas很好的配合,旨在简化python图的创建
- ggplot:基于matplotlib,同seaborn类似,相对来讲,接口并不是很pythonic
- bobkh:面向浏览器的可视化,目标是实现交互式的web可视化
- pygal:用户创建svg格式的图形
- plotly:属于分析和可视化的在线工具,有相应的python版本接口
- pyecharts:echarts的python版本,属于百度开源产品,内容丰富,文档为中文
Matplotlib 特点和优势:
- 使用简单,matplotlib作为老牌可视化工具,使用也极其简单
- 可以使用渐进,交互式方式实现数据可视化
- 表现能力强,对图像元素控制力强
- 跟python配合紧密,特别是跟pandas等数据工具
折线图
- 折线图是一种以变化的曲线用来反映数据变化的一种简单图例
- 折线图是一种典型的直角坐标图,主要在一个平面上显示变化曲线
- 折线图理论上是一系列形如(x,y)的坐标点,表达此类数据序列一般通过列表即可完成
- 不同点之间的线由程序自动拟合连接
PLT绘图的两种方式:
- 面向函数:plt.plot()
- OOP:由一个个单独元素组成
PLT中OOP绘图方式:
- Figure:是plt的画布,所有元素都在Figure上
- Axes:这个可以理解成一个坐标系统,可以有多个
- Axis:坐标轴,包括刻度线/刻度文本/坐标网格/坐标轴标题等
- Artise:图像中的一个个具体元素,具体又可以细分为两类
- 简单元素:一个简单的元素,不能再继续细分
- 容器类型:由简单元素类型的Aritists构成的复杂Artist,例如Axes
- 对于Figure配置属性,一般用set_xxx()
- 添加Axes用add_axes()
- 颜色的表示
- 英文单词:color = 'red'
- RGB:color = (1.0,0.4,0.3)
- 线型的控制:
- solid:实线,会用'-'做简写
- dashed:虚线,用'--'做简写
- dashdot:点划线,用'-.'简写
- dotted:实现电线,用':'简写
- 线的类型和宽度控制
- 在构造函数或者绘图函数中使用参数linestyle和linewidth即可
- 在Line2D的实例中使用add_xxx来进行添加即可