自ChatGPT推出近两年以来,生成式AI吸引了数亿用户,并被预测将对经济产生巨大影响。Filtered Technologies通过分析在线论坛,发现了超过100个生成式AI的真实用例,这些用例揭示了技术在减轻工作负担、提高生产力和创新思维方面的实际应用。
《哈佛商业评论》发布了这100个具体用例,同时将这100个类别归纳为六个主要主题,这些主题能够立即让用户了解生成式人工智能的用途:
-
技术支持和故障排除(23%)
-
内容创建和编辑(22%)
-
个人和专业支持(17%)
-
学习与教育(15%)
-
创意与娱乐(13%)
-
研究、分析和决策(10%)
这些基于用户实际应用生成式AI的案例,展示了生成式AI技术如何提高日常工作和生活的效率和乐趣。
个人用户可借此发现更多吸引自己的应用场景,而企业用户,尤其是早期采纳者,可利用这些案例激发员工参与,推动技术在组织内的广泛应用。在面对安全性和性能等关键问题,此清单或将成为影响决策者判断的重要参考。
# 50 橡皮鸭调试 (Rubber duck debugging)是一种编程调试技术,它建议程序员在遇到难以解决的问题时,向一个假想的听众(通常是一只橡皮鸭)解释他们的代码。这样做的目的是迫使程序员清晰地表达他们的思路,从而可能在解释过程中发现问题所在。这种方法有助于程序员从新的角度审视代码,有时能够自己发现并解决问题。即使没有真正的橡皮鸭,程序员也可以通过写下代码逻辑或向同事口头解释来实施这种技术。
# 64 龙与城(Dungeons & Dragons)主要用于辅助游戏设计,如生成冒险剧情、创建角色和生物、设计游戏世界、提供随机事件以及帮助解释游戏规则。
用户在做什么(举例)
产生想法(#1)。“我喜欢用它来进行头脑风暴,因为它就像一个完美的队友。它能跟上我的思路,不会被无效的想法困住,还能总结我们的想法,便于日后展示或参考。”
具体搜索(#3)。“我祖母曾给我一块特别的饼干,我很喜欢它的味道和质地。直到一天晚上,我去了杂货店……我决定向ChatGPT求助,结果找到了SnackWell的饼干。”
编辑文本(#4)。“我用它来检查自己对专栏文章、演讲和其他政治内容的偏见。如果有什么让我感觉强烈,我会把它复制到ChatGPT,让它指出文章中的逻辑谬误和可能的错误信息。这是一次巨大的直觉检验。”
起草电子邮件(#11)。“我从事投资者关系工作,ChatGPT帮助我起草电子邮件节省的时间几乎无法估量。”
简单解释(#12)。“它在向非工程师解释概念方面也比我们工程师做得好。默认情况下,它的写作水平适合五年级学生,这对我们在工作中互动的许多人来说非常合适。”
Excel公式(#14)。“我必须编写许多.vb和Excel公式来协调技术水平较低的人的数据。ChatGPT将原本45分钟的任务缩短到大约3到5分钟。”
投诉(#23)。“洗车店损坏了我妻子的SUV并拒绝赔偿,所以我用GPT起草了一份索赔书,并把他们告上了小额索赔法庭。”
生成评估(#26)。“我认识一些经理,他们用它来帮助撰写员工的绩效评估报告。”
编辑法律文件(#44)。“我给它提供了一份关于SaaS合同的冗长、复杂的服务级别协议,并要求它重写,使其更简单、易懂。它保留了重要的SLA条款,同时将语言简化了70%。”
采样数据(#85)。“它非常适合生成演示数据。如果你需要一堆虚构的公司名称、客户名称或产品代码,ChatGPT非常擅长生成这类信息。”
最常见的应用是创意的产生
我们很自然地将内容(文本、图像、合成数据)视为生成式AI的产出。
然而,在现实应用中,人们似乎已经对这项技术有了更广泛的认知,包括创意的生成。这不仅仅是语义上的问题。由于创意并非最终产品,在这个应用场景中,生成式AI实际上是在辅助现有的半自动化、半手动流程,而不是完全取代它们。
在列表中15个学习和教育的应用案例中,也可以看到类似的情况。这种人类与机器的协作方式,对于大多数担心被技术取代的人来说,威胁要小得多。实际上,对于列表中的几乎每一个应用案例,都有人类在流程中进行审查、批准和利用AI生成的结果。
分析显示,现在更多人能够获得以往昂贵的专业服务。
列表中有13项涉及法律、编程或医学。法律文件的理解、编辑和起草不再需要指定律师或产生费用。代码可以在几秒内编写、审查和生成。人们也开始使用生成式AI绕过医学专家,因为专家费用昂贵,许多人无法获得,且通常无法全天候按需提供服务。
但是网络还无法完全提供个性化的建议和支持,因此,人们开始将生成式AI视为一个折中的选择:它廉价、可访问、始终在线、即时且个性化。
当然,尽管这些模型先进,但并不总是完全理解其作用的细微差别、特定背景知识和伦理考量,因此有时可能会提供过于简单或不正确的建议和输出。
这份列表在工作和休闲的例子之间取得了一定的平衡。实际上,对于许多用例,我们发现每个类别中都能找到相应的实例,如语言翻译(#18)、起草正式信函(#31)和事实核查(#52)。
这项研究在帮助人们了解如何将人工智能融入日常生活方面取得了显著进展,使他们能够享受到人工智能带来的众多益处。
应用案例随着技术的进步和人们对其应用的创新将不断扩展,其中许多用例具有持久的价值,因为它们支持人类永恒的追求:学习、沟通和思考。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。