成功解决TypeError: Encoders require their input to be uniformly strings or numbers. Got [‘float‘, ‘int‘,

在使用LabelEncoder对数据进行整数编码时遇到TypeError,原因是输入数据类型混合。解决方案是先将所有数据转换为同一类型,如字符串。修改后的代码中,先将类别数据列转换为字符串,再应用LabelEncoder进行编码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 我在做数据的特征处理的时候,需要对类别数据进行整数编码。结果出现如下错误:

TypeError: Encoders require their input to be uniformly strings or numbers. Got ['float', 'int', 'str']

这个错误通常是因为在使用编码器对数据进行处理时,输入的数据类型不一致。解决方案就是将所有的数据统一转换为同一数据类型,比如将所有数据转换为字符串或数值。

原代码

from sklearn.preprocessing import LabelEncoder
    label_encoder = LabelEncoder()
    for col in cols:
        df3[col] = label_encoder.fit_transform(df3[col])

其中,cols为需要转换的类别数据所在列的列名组成的列表,df3为整个数据的dataFrame。

修改之后

from sklearn.preprocessing import LabelEncoder    
    label_encoder = LabelEncoder()
    for col in cols:
        df3[col] = df3[col].astype(str)
        df3[col] = label_encoder.fit_transform(df3[col])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值