PyTorch的基本介绍(一)

PyTorch的发展

  • 2002年发布Torch
    是一个通用的机器学习的计算框架,但由于其主要的开发语言是Lua语言,所以没有通用起来
  • 2016年
    Facebook在原来Torch7(2011)的基础之上重新开发了一个框架,并且命名为Pytorch,沿用了c和c++的计算后端

PyTorch与同类框架

同类型框架
可以大致分成三个阵营(Google、Facebook、Microsoft)
Chainer是日本的一款,Pytorch借鉴了其API的设计规范
框架的\演化过程如下:
框架演化过程
大多数会选择Pytorch或者TensorFlow,那么这二者的区别主要在于是静态图优先还是动态图优先
PyTorch使用动态图,每执行一次操作都会重新构建一个新的计算图,比如说像下面这样,程序会按照我们编写的命令执行下去,那么调试起来会更容易
在这里插入图片描述
TensorFlow使用静态图,要先定义计算图,然后再去使用它(相当于先去定义,再去使用,无法查看中间变量输出)。
在这里插入图片描述

静态图动态图
定义方式计算图在运行之间就定义好计算图在运行是动态构建
执行效率计算图已经构建好,可以优化动态构建优化空间小
易用性需要用户手动管理计算图的构建和执行,会增加编程的复杂性更接近于普通的编程语言
自动微分需要额外的步骤来支持自动微分支持自动微分,可以直接获取梯度

PyTorch功能

PyTorch生态系统

CV方向就是有TorchVision,NLP领域就有AllenNLP,图卷积有PyTorch geometric……

举例PyTorch用途

自动求导

比如对于公式 y = a 2 x + b x + c y=a^2x+bx+c y=a2x+bx+c中对于x=1时的a,b,c求偏导
在这里插入图片描述
得到的结果如下
在这里插入图片描述

常用的网络层

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值