代码随想录day10 | 20.有效的括号 1047.删除字符串中的所有相邻重复项 150.逆波兰表达式求值

一、有效的括号

20.有效的括号
感觉做了很多次了。很经典的使用栈问题。

抓住关键不匹配的场景只有三种情况:
在这里插入图片描述


遇到左括号,就把对应的右括号压入栈中。(这样压入是为了出栈时更好的匹配)
遇到右括号,就开始与栈顶的元素进行匹配了。

我们再来看看结束条件是啥样的:
在这里插入图片描述

class Solution
{
public:
    bool isValid(string s)
    {
        // 可以剪枝
        if (s.size() % 2 != 0)
            return false;

        stack<int> st;
        for (int i = 0; i < s.size(); i++)
        {
            if (s[i] == '[')
            {
                st.push(']');
            }
            else if (s[i] == '(')
            {
                st.push(')');
            }
            else if (s[i] == '{')
            {
                st.push('}');
            }

            // 此时遇到右括号了
            // 这是第二、三种情况
            else if (st.empty() || s[i] != st.top())
            {
                return false;
            }
            else // 这就是正常的匹配的情况!!消除的过程
                st.pop();
        }
        //第一种情况:此时我们已经遍历完了字符串,但是栈不为空,说明有相应的左括号没有右括号来匹配
        return st.empty();
    }
};

1、else if (st.empty() || s[i] != st.top())?

严谨一点,因为s[i] != st.top() && st.empty() 这样的话,容易先操作了空栈!

二、删除字符串中的所有相邻重复项

1047.删除字符串中的所有相邻重复项
这个栈,用来存放我们遍历过的元素,因为只有这样才能最方便的知道或者记录上一个遍历过的元素是啥。
这个题很像 括号匹配 这个题。

class Solution
{
public:
    string removeDuplicates(string s)
    {
        stack<char> st;
        string res;
        for (auto e : s)
        {
            if (st.empty() || e != st.top())
            {
                st.push(e);
            }
            else
            {
                st.pop();
            }
        }

        while (!st.empty())
        {
            res += st.top();
            st.pop();
        }
        reverse(res.begin(), res.end());
        return res;
    }
};

当然可以拿字符串直接作为栈,这样省去了栈还要转为字符串的操作。
在这里插入图片描述

// 不使用栈,直接用string模拟
class Solution
{
public:
    string removeDuplicates(string s)
    {
        string res;
        for (auto e : s)
        {
            if (res.empty() || e != res.back())
            {
                res.push_back(e);
            }
            else
            {
                res.pop_back();
            }
        }
        return res;
    }
};

三、逆波兰表达式求值

150.逆波兰表达式求值

后缀表达式就是逆波兰表达式。
我们看着比较舒服的,正常的就叫做中缀表达式。
在这里插入图片描述

中序遍历的结果:1 + 3 X 4 +5
存在的问题就是,一定要加括号,才能保证运算结果的正确性!
但是后缀表达式,我们就不需要加括号。计算机自己去顺序处理就可以了。

用栈模拟:
遇见数字,就入栈;遇见符号,就拿栈里面就近的两个数字计算,然后再次入栈。

这个操作的实质也是 “消除” ,只不过是拿两个元素来新“计算”得到新值。

class Solution
{
public:
    int evalRPN(vector<string> &tokens)
    {
        stack<int> st;

        for (int i = 0; i < tokens.size(); i++)
        {
            if (tokens[i] == "+" || tokens[i] == "-" || tokens[i] == "*" || tokens[i] == "/")
            {
                int num1 = st.top();
                st.pop();
                int num2 = st.top();
                st.pop();

                if (tokens[i] == "+")
                    st.push(num2 + num1);
                if (tokens[i] == "-")
                    st.push(num2 - num1);
                if (tokens[i] == "*")
                    st.push(num2 * num1);
                if (tokens[i] == "/")
                    st.push(num2 / num1);
            }
            else
            {
                st.push(atoi(tokens[i].c_str()));
            }
        }
        int res = st.top();
        st.pop();
        return res;
    }
};

注意num1和num2的运算顺序,是num1除num2,还是num2除num1。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值