实例3:卷积神经网络ResNet18+tensorflow2实现(完整代码+注释)

基本思想:随着梯度的加深,后面的的梯度很难传播到前面的层,因此加入了一个短接的思想
basic block包含了2个卷积层和1个短接线(如下图)

basicblock示意图

18167d39c0da4a9eb2b7a89935e13707.png

一个resblock示意图

292fefff8c49495b9be9937d8f2649de.png

 

resnet18示意图

a104903adab24630b297ccbcff808ccc.png

 定义resnet18的代码

import  tensorflow as tf
from    tensorflow import keras
from    tensorflow.keras import layers, Sequential



class BasicBlock(layers.Layer):
    # 残差模块
    def __init__(self, filter_num, stride=1):
        super(BasicBlock, self).__init__()
        # 第一个卷积单元
        self.conv1 = layers.Conv2D(filter_num, (3, 3), strides=stride, padding='same')
        # padding会根据你的步长进行补全,步长为1,输出=输入
        self.bn1 = layers.BatchNormalization()
        self.relu = layers.Activation('relu')
        # 第二个卷积单元
        self.conv2 = layers.Conv2D(filter_num, (3, 3), strides=1, padding='same')
        self.bn2 = layers.BatchNormalization()

        if stride != 1:# 通过1x1卷积完成shape匹配
            self.downsample = Sequential()
            self.downsample.add(layers.Conv2D(filter_num, (1, 1), strides=stride))
        else:# shape匹配,直接短接
            self.downsample = lambda x:x

    def call(self, inputs, training=None):

        # [b, h, w, c],通过第一个卷积单元
        out = self.conv1(inputs)
        out = self.bn1(out)
        out = self.relu(out)
        # 通过第二个卷积单元
        out = self.conv2(out)
        out = self.bn2(out)
        # 通过identity模块
        identity = self.downsample(inputs) # 注意这里下采样的输入是input,这样才能将size恢复到和输入一样
        # 2条路径输出直接相加
        output = layers.add([out, identity])
        output = tf.nn.relu(output) # 为了防止参数混淆,使用函数的relu进行激活 

        return output


class ResNet(keras.Model):
    # 通用的ResNet实现类
    def __init__(self, layer_dims, num_classes=10): # [2, 2, 2, 2] 4个resblock,每个所包含的basicblock的个数
        super(ResNet, self).__init__()
        # 根网络,预处理
        self.stem = Sequential([layers.Conv2D(64, (3, 3), strides=(1, 1)),
                                layers.BatchNormalization(),
                                layers.Activation('relu'),
                                layers.MaxPool2D(pool_size=(2, 2), strides=(1, 1), padding='same')
                                ])
        # 堆叠4个Block,每个block包含了多个BasicBlock,设置步长不一样
        self.layer1 = self.build_resblock(64,  layer_dims[0])
        self.layer2 = self.build_resblock(128, layer_dims[1], stride=2) #步长为2,使得size变小,channel变长
        self.layer3 = self.build_resblock(256, layer_dims[2], stride=2)
        self.layer4 = self.build_resblock(512, layer_dims[3], stride=2) # 此时输出的维度无法具体知道

        # 通过Pooling层将高宽降低为1x1 output:[b,512,h,w] >> [b,512,1,1]
        self.avgpool = layers.GlobalAveragePooling2D()
        # 最后连接一个全连接层分类
        self.fc = layers.Dense(num_classes)

    def call(self, inputs, training=None):
        # 通过根网络
        x = self.stem(inputs)
        # 一次通过4个模块
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        # 通过池化层
        x = self.avgpool(x)
        # 通过全连接层
        x = self.fc(x)

        return x



    def build_resblock(self, filter_num, blocks, stride=1):
        # 辅助函数,堆叠filter_num个BasicBlock
        res_blocks = Sequential()
        # 只有第一个BasicBlock的步长可能不为1,实现下采样
        res_blocks.add(BasicBlock(filter_num, stride))

        for _ in range(1, blocks):#其他BasicBlock步长都为1
            res_blocks.add(BasicBlock(filter_num, stride=1))

        return res_blocks


def resnet18():
    # 通过调整模块内部BasicBlock的数量和配置实现不同的ResNet
    return ResNet([2, 2, 2, 2])


def resnet34():
     # 通过调整模块内部BasicBlock的数量和配置实现不同的ResNet
    return ResNet([3, 4, 6, 3])

利用resnet18进行深度学习代码

import  tensorflow as tf
from    tensorflow.keras import layers, optimizers, datasets, Sequential
import  os
from    resnet import resnet18

os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
tf.random.set_seed(2345)





def preprocess(x, y):
    # 将数据映射到-1~1
    x = 2*tf.cast(x, dtype=tf.float32) / 255. - 1
    y = tf.cast(y, dtype=tf.int32) # 类型转换
    return x,y


(x,y), (x_test, y_test) = datasets.cifar10.load_data() # 加载数据集
y = tf.squeeze(y, axis=1) # 删除不必要的维度
y_test = tf.squeeze(y_test, axis=1) # 删除不必要的维度
print(x.shape, y.shape, x_test.shape, y_test.shape)


train_db = tf.data.Dataset.from_tensor_slices((x,y)) # 构建训练集
# 随机打散,预处理,批量化
train_db = train_db.shuffle(1000).map(preprocess).batch(512)

test_db = tf.data.Dataset.from_tensor_slices((x_test,y_test)) #构建测试集
# 随机打散,预处理,批量化
test_db = test_db.map(preprocess).batch(512)
# 采样一个样本
sample = next(iter(train_db))
print('sample:', sample[0].shape, sample[1].shape,
      tf.reduce_min(sample[0]), tf.reduce_max(sample[0]))


def main():

    # [b, 32, 32, 3] => [b, 1, 1, 512]
    model = resnet18() # ResNet18网络
    model.build(input_shape=(None, 32, 32, 3))
    model.summary() # 统计网络参数
    optimizer = optimizers.Adam(lr=1e-4) # 构建优化器

    for epoch in range(100): # 训练epoch

        for step, (x,y) in enumerate(train_db):

            with tf.GradientTape() as tape:
                # [b, 32, 32, 3] => [b, 10],前向传播
                logits = model(x)
                # [b] => [b, 10],one-hot编码
                y_onehot = tf.one_hot(y, depth=10)
                # 计算交叉熵
                loss = tf.losses.categorical_crossentropy(y_onehot, logits, from_logits=True)
                loss = tf.reduce_mean(loss)
            # 计算梯度信息
            grads = tape.gradient(loss, model.trainable_variables)
            # 更新网络参数
            optimizer.apply_gradients(zip(grads, model.trainable_variables))

            if step %50 == 0:
                print(epoch, step, 'loss:', float(loss))



        total_num = 0
        total_correct = 0
        for x,y in test_db:

            logits = model(x)
            prob = tf.nn.softmax(logits, axis=1)
            pred = tf.argmax(prob, axis=1)
            pred = tf.cast(pred, dtype=tf.int32)

            correct = tf.cast(tf.equal(pred, y), dtype=tf.int32)
            correct = tf.reduce_sum(correct)

            total_num += x.shape[0]
            total_correct += int(correct)

        acc = total_correct / total_num
        print(epoch, 'acc:', acc)



if __name__ == '__main__':
    main()

代码和示意图出处:

课时104 ResNet实战-1_哔哩哔哩_bilibili

 

Traffic Sign Classification | HackerNoon

 

  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,让我们开始吧! 首先,我们需要导入必要的库和数据集。这里我们使用MNIST数据集,它包含手写数字的图像和对应的标签。 ```python import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.datasets import mnist # 导入数据集 (x_train, y_train), (x_test, y_test) = mnist.load_data() ``` 接下来,我们将对图像进行预处理,将像素值缩放到0到1之间,并将标签转换为one-hot编码。 ```python # 将像素值缩放到0到1之间 x_train = x_train.astype("float32") / 255.0 x_test = x_test.astype("float32") / 255.0 # 将标签转换为one-hot编码 y_train = keras.utils.to_categorical(y_train, 10) y_test = keras.utils.to_categorical(y_test, 10) ``` 然后,我们将定义ResNet的结构。这里我们使用了经典的ResNet-18结构,包括卷积层、批归一化层、ReLU激活函数、最大池化层、残差块和全局平均池化层等组件。 ```python def conv_block(inputs, filters, strides): x = layers.Conv2D(filters, 3, strides=strides, padding="same")(inputs) x = layers.BatchNormalization()(x) x = layers.ReLU()(x) return x def identity_block(inputs, filters): x = layers.Conv2D(filters, 3, padding="same")(inputs) x = layers.BatchNormalization()(x) x = layers.ReLU()(x) x = layers.Conv2D(filters, 3, padding="same")(x) x = layers.BatchNormalization()(x) x = layers.Add()([inputs, x]) x = layers.ReLU()(x) return x def resnet18(): inputs = keras.Input(shape=(28, 28, 1)) x = conv_block(inputs, 64, strides=1) x = identity_block(x, 64) x = identity_block(x, 64) x = conv_block(x, 128, strides=2) x = identity_block(x, 128) x = identity_block(x, 128) x = conv_block(x, 256, strides=2) x = identity_block(x, 256) x = identity_block(x, 256) x = conv_block(x, 512, strides=2) x = identity_block(x, 512) x = identity_block(x, 512) x = layers.GlobalAveragePooling2D()(x) outputs = layers.Dense(10, activation="softmax")(x) return keras.Model(inputs, outputs) ``` 最后,我们将编译模型并开始训练。这里我们使用交叉熵损失函数和Adam优化器。 ```python # 创建模型 model = resnet18() # 编译模型 model.compile( loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"] ) # 训练模型 model.fit(x_train, y_train, batch_size=128, epochs=10, validation_split=0.1) # 在测试集上评估模型 model.evaluate(x_test, y_test) ``` 恭喜!现在你已经成功地使用TensorFlow(Keras)搭建了卷积神经网络ResNet实现了手写数字识别。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值