- 博客(11)
- 收藏
- 关注
原创 激光雷达和视觉SLAM八种流行算法的评估和比较
本文中,我们评估了八种流行的开源三维激光雷达和视觉SLAM(同时定位与地图构建)算法,分别是LOAM、Lego LOAM、LIO SAM、HDL Graph、ORB SLAM3、Basalt VIO和SVO2。我们进行了室内和室外的实验,以研究以下因素的影响:i) 传感器的安装位置,ii) 地形类型和振动的影响,iii) 运动的影响(线性和角速度变化)。我们比较它们在相对和绝对位姿误差方面的性能。我们还提供了它们所需的计算资源的比较。
2024-01-01 13:50:36 2588 1
原创 在地下环境中评估基于激光雷达的SLAM算法
在缺乏自然或光照不足的恶劣地下(SubT)环境中,自主机器人的自主导航是一个具有挑战性的任务,促进了用于姿态估计和地图制作的算法的发展。受到在这种环境中实际部署自主机器人的需求启发,本文提出了一项关于3D SLAM算法的实验性比较研究。该研究集中关注具有开源实现的最新激光雷达SLAM算法,包括i)仅激光雷达,如BLAM、LOAM、ALOAM、ISC-LOAM和hdl图形SLAM,或ii)激光雷达惯性,如LeGO-LOAM、Cartographer、LIO-mapping和LIO-SAM。
2024-01-01 13:48:39 1213
原创 Multi-modal Sensor Fusion for Auto Driving Perception: A Survey 自动驾驶多模态传感器融合综述
Multi-modal Sensor Fusion for Auto Driving Perception: A Survey 论文翻译
2022-05-28 17:24:37 2019
原创 残差神经网络ResNet学习,以ResNet18为例代码剖析
1.首先导入需要使用的包import torchimport torch.nn as nnimport torch.nn.functional as F我用的是pytorch,所以导入这三个。2.定义的残差模块结构残差块有两种设计方式,左边的是用于18,34层的,这样参数多,右面这种设计方式参数少,适用于更深度的class ResidualBlock(nn.Modu...
2019-12-02 22:30:44 8969 5
原创 神经网络过拟合优化
1 引 言在深度学习中,神经网络模型是其较为常见的模型之一。神经网络已经在计算机视觉、自然语言处理、语音识别等领域取得了突飞猛进的发展,其强大的特征学习能力引起了国内外学者的广泛关注,有着十分广泛的应用前景。但是,神经网络在训练样本中表现得过于优越,导致在验证数据集以及测试数据集中表现不佳,这种情况称为过拟合。过拟合常常在模型学习能力过强的情况中出现,此时的模型学习能力太强,以至于将训练集单...
2019-10-24 21:53:33 2421
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人