完整的模型训练套路////(b站小土堆视频学习笔记)

一、准备数据集

import torchvision

#准备数据集
train_data = torchvision.datasets.CIFAR10(root="../data",train=True,transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10(root="../data",train=False,transform=torchvision.transforms.ToTensor(),
                                         download=True)
#lenth 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
#如果train_data_size=10,训练数据集的长度为:10
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))

 准备了数据集并加载了长度

二、利用DataLoader,来加载数据集

#利用DataLoader,来加载数据集
train_dataloader = DataLoader(train_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)

三、搭建网络模型

import torch
from torch import nn

#搭建网络模型
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, padding=2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, padding=2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, padding=2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(1024, 64),
            nn.Linear(64, 10)
        )

    def forward(self,x):
        x = self.model(x)
        return x

#测试网络的正确性
if __name__ == '__main__':
    tudui = Tudui()
    input = torch.ones((64,3,32,32))  #设定一个输入的尺寸,64 barch_size, 3 通道,32*32
    output = tudui(input)
    print(output.shape)

网络模型可以单独放在一个Python文件中,只需在原来的文件中import一下,例如将网络模型的Python文件名命名为model,在原来的Python文件中 from model import *

注意这两个文件需要在同一个路径下

网络模型下面可以测试网络的正确性

返回64行数据, 每行数据有10个

四、创建网络模型

五、损失函数

六、优化器

#优化器
# learning_rate = 0.01
# 1e-2=1 x (10)^(-2) = 1 /100 = 0.01
learning_rate = 1e-2
optimizer = torch.optim.SGD(tudui.parameters(), lr=learning_rate)

七、设置训练网络的一些参数

#设置训练网络的一些参数
#记录训练的次数
total_train_step = 0
#记录测试的次数
total_test_step = 0
#训练的轮数
epoch = 10

for i in range(epoch):
    print("-------第{}轮训练开始-------".format(i+1))

    #训练步骤开始
    for data in train_dataloader:
        imgs,targets = data
        outputs = tudui(imgs)
        loss = loss_fn(outputs,targets)

        #优化器优化模型
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_train_step = total_train_step + 1
        print("训练次数:{},Loss:{}".format(total_train_step,loss.item()))

运行结果

测试步骤

    #测试步骤开始
    total_test_loss = 0
    with torch.no_grad():
        for data in test_dataloader :
            imgs, targets = data
            outputs = tudui(imgs)
            loss = loss_fn(outputs,targets)
            total_test_loss = total_test_loss + loss.item()
    print("整体测试集上的Loss:{}".format(total_test_loss))

结果

用tensorboard可视化

#添加tensorboard
writer = SummaryWriter("../logs_train")

for i in range(epoch):
    print("-------第{}轮训练开始-------".format(i+1))

    #训练步骤开始
    for data in train_dataloader:
        imgs,targets = data
        outputs = tudui(imgs)
        loss = loss_fn(outputs,targets)

        #优化器优化模型
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_train_step = total_train_step + 1
        if total_train_step % 100 == 0:
            print("训练次数:{},Loss:{}".format(total_train_step,loss.item()))
            writer.add_scalar("train_loss",loss.item(),total_train_step)

    #测试步骤开始
    total_test_loss = 0
    with torch.no_grad():
        for data in test_dataloader :
            imgs, targets = data
            outputs = tudui(imgs)
            loss = loss_fn(outputs,targets)
            total_test_loss = total_test_loss + loss.item()
    print("整体测试集上的Loss:{}".format(total_test_loss))
    writer.add_scalar("test_loss", total_test_loss, total_test_step)
    total_test_step = total_train_step + 1

writer.close()

 可清晰地看到训练跟测试的损失都在 减小

保存

完整代码

train.py

import torchvision
from torch.utils.tensorboard import SummaryWriter
from model import *
from torch.utils.data import DataLoader



#准备数据集
train_data = torchvision.datasets.CIFAR10(root="../data",train=True,transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10(root="../data",train=False,transform=torchvision.transforms.ToTensor(),
                                         download=True)
#lenth 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
#如果train_data_size=10,训练数据集的长度为:10
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))

#利用DataLoader,来加载数据集
train_dataloader = DataLoader(train_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)

#创建网络模型
tudui = Tudui()

#损失函数
loss_fn = nn.CrossEntropyLoss()

#优化器
# learning_rate = 0.01
# 1e-2=1 x (10)^(-2) = 1 /100 = 0.01
learning_rate = 1e-2
optimizer = torch.optim.SGD(tudui.parameters(), lr=learning_rate)

#设置训练网络的一些参数
#记录训练的次数
total_train_step = 0
#记录测试的次数
total_test_step = 0
#训练的轮数
epoch = 10

#添加tensorboard
writer = SummaryWriter("../logs_train")

for i in range(epoch):
    print("-------第{}轮训练开始-------".format(i+1))

    #训练步骤开始
    for data in train_dataloader:
        imgs,targets = data
        outputs = tudui(imgs)
        loss = loss_fn(outputs,targets)

        #优化器优化模型
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_train_step = total_train_step + 1
        if total_train_step % 100 == 0:
            print("训练次数:{},Loss:{}".format(total_train_step,loss.item()))
            writer.add_scalar("train_loss",loss.item(),total_train_step)

    #测试步骤开始
    total_test_loss = 0
    with torch.no_grad():
        for data in test_dataloader :
            imgs, targets = data
            outputs = tudui(imgs)
            loss = loss_fn(outputs,targets)
            total_test_loss = total_test_loss + loss.item()
    print("整体测试集上的Loss:{}".format(total_test_loss))
    writer.add_scalar("test_loss", total_test_loss, total_test_step)
    total_test_step = total_train_step + 1

    torch.save(tudui,"tudui_{}.pth".format(i))  #保存每一轮的训练结果
    print("模型已保存")

writer.close()

model.py

import torch
from torch import nn

#搭建网络模型
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5,1, padding=2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5,1,padding=2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5,1, padding=2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(1024, 64),
            nn.Linear(64, 10)
        )

    def forward(self,x):
        x = self.model(x)
        return x

#测试网络的正确性
if __name__ == '__main__':
    tudui = Tudui()
    input = torch.ones((64,3,32,32))  #设定一个输入的尺寸,64 barch_size, 3 通道,32*32
    output = tudui(input)
    print(output.shape)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值