源码:https://github.com/MVIG-SJTU/AlphaPose/tree/pytorch
下载源码后首先看一下作者写的md文档里面有相关的代码介绍以及怎样去使用它,我建议最好是新建一个虚拟环境(我在之前的环境修改后十分伤心)
先是新建虚拟环境:
conda create -n 环境名 python=(版本) 我使用的是3.6的版本
查看环境: conda env list
切换为新建的环境: activate 环境名
进入环境后安装源码所需的文件包,它这个支持 pytorch1.1 以上的版本,我之前使用1.5的报错后来又改成1.1的就不报错了,我建议按照我的配置来进行搭建
安装 conda install pytorch=1.1.0 torchvision=0.3.0 -c pytorch
进入python 选择新建的环境
安装源码所带的 requirements.txt文件中的文件 可以吧torch 和 torchvision删除,我们之前已经安装过了,之后运行 pip install -r requirements.txt
有的人运行 pip install -r requirements.txt会报错 那就一条一条的进行安装(有的我也忘记都是安装啥了,可以看一下我完整的环境进行匹配 有时候版本不一样也是会报错 )
这是完整的环境 可以先看自己的环境是否可以使用再来进行对比
接下来就是下载源码所需的两个模型文件这个是作者训练好的模型效果很好当然你也可以训练自己的数据模型 把下载好的模型分别放到 models中
放入 sppe文件夹 https://pan.baidu.com/s/15jbRNKuslzm5wRSgUVytrA
放入 yolo文件夹 https://pan.baidu.com/s/1Zb2REEIk8tcahDa8KacPNA
之后就是尽情测试
测试图片(他会自动遍历文件夹):
python demo.py --indir 自己图片路径 --outdir examples/res --save_img --sp
测试视频
python video_demo.py --video 自己视频路径 --outdir examples/res --save_video --sp
运行时我出现的一些报错:
这个是因为自己图片路径出错了 我建议无论是测试图片还是视频都使用绝对路径
这个是因为自己opencv-python 版本的问题 更改一下opencv-python的版本就可以了我更改后的版本是4.5.1.48,pip install opencv-python==4.5.1.48 其他的版本我没有试过你们可以尝试一下。
相关的功能md文档都有介绍 这里就不在进行演示了
相关了解可以看源码中 opt.py文件 里面有各种功能的接口 比如图片的显示 和保存等
主要是自己图个方便记录一下 详细的请看
https://blog.csdn.net/weixin_44958234/article/details/115297659
他写的很详细