7.2 房价回归是否存在异方差?数据集hprice2a.dta包含美国波士顿506个社区的房屋中位数价格的横截面数据,考虑以下特征价格回归:
其中,lprice为房价的对数,lnox为空气污染程度的对数,ldist为社区到就业中心距离的对数,rooms为房屋的平均房间数,stratio为社区学校的学生 - 教师比例,下标i表示社区i。
(1)以5%的置信度,使用BP检验,检验是否存在异方差(假设扰动项为iid,分别以拟合值以及所有解释变量进行检验)。
(2)以5%的置信度,使用怀特检验,检验是否存在异方差。
解答如下:
在Stata中导入数据集hprice2a.dta,在命令窗口输入如下命令:
代码:
reg lprice lnox ldist rooms stratio #特征价格回归
rvfplot #画残差与拟合值散点图
estat hettest,iid #使用拟合值y(hat)进行BP检验
estat hettest,iid rhs #使用所有解释变量进行BP检验
estat imtest,white #怀特检验
结果如图:
得到特征价格回归方程:
且各解释变量均显著,不过为初步考察是否存在异方差,画出残差与拟合值的散点图如下:
由上图发现当lprice的拟合值较小时,扰动项的方差较大,大致判断可能存在异方差 。首先使用拟合值进行BP检验结果得P值=0.0000,如下图:
其次使用所有解释变量进行BP检验,结果得P值=0.0000,如下图
综上所述,强烈拒绝同方差的原假设,认为存在异方差,也证实了残差图异方差的大致判断。最后进行5%置信度的White检验,结果得P值(prob>chi2)=0.0000,如下图:
由White检验同样强烈拒绝同方差的原假设,认为存在异方差,其结果与BP检验一致。解决方案请看下一节