Python机器学习18——Xgboost和Lightgbm结合分位数回归(机器学习与传统统计学结合)_xgboost做分位数回归(1)

现在能在网上找到很多很多的学习资源,有免费的也有收费的,当我拿到1套比较全的学习资源之前,我并没着急去看第1节,我而是去审视这套资源是否值得学习,有时候也会去问一些学长的意见,如果可以之后,我会对这套学习资源做1个学习计划,我的学习计划主要包括规划图和学习进度表。

分享给大家这份我薅到的免费视频资料,质量还不错,大家可以跟着学习

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!


模拟数据进行分位数回归

先制作一个模拟数据集

def f(x: np.ndarray) -> np.ndarray:
    return x * np.sin(x)

rng = np.random.RandomState(2023)
X = np.atleast_2d(rng.uniform(0, 10.0, size=1000)).T
expected_y = f(X).ravel()
sigma = 0.5 + X.ravel() / 10.0
noise = rng.lognormal(sigma=sigma) - np.exp(sigma**2.0 / 2.0)
y = expected_y + noise

print(X.shape,y.shape)

然后画图看看:

plt.figure(figsize=(6,2),dpi=100)
plt.scatter(X,y,s=1)
plt.show()

#划分训练集和测试集


X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=rng)
print(f"Training data shape: {X_train.shape}, Testing data shape: {X_test.shape}")

这里采用三种模型进行拟合预测对比,分别是线性分位数回归,XGB结合分位数,LightGBM结合分位数:

alphas = np.arange(5, 100, 5) / 100.0
print(alphas)
mse_qr, mse_xgb, mse_lgb = [], [], []
r2_qr, r2_xgb, r2_lgb = [], [], []
qr_pred,xgb_pred,lgb_pred={},{},{}

# Train and evaluate
for alpha in alphas:
    # Quantile Regression
    model_qr = QuantReg(y_train, sm.add_constant(X_train)).fit(q=alpha)
    model_pred=model_qr.predict(sm.add_constant(X_test))
    mse_qr.append(mean_squared_error(y_test,model_pred ))
    r2_qr.append(r2_score(y_test,model_pred))
    
    # XGBoost
    model_xgb = xgb.train({"objective": "reg:quantileerror", 'quantile_alpha': alpha}, 
                          xgb.QuantileDMatrix(X_train, y_train), num_boost_round=100)
    model_pred=model_xgb.predict(xgb.DMatrix(X_test))
    mse_xgb.append(mean_squared_error(y_test,model_pred ))
    r2_xgb.append(r2_score(y_test,model_pred))
    
    # LightGBM
    model_lgb = lgb.train({'objective': 'quantile', 'alpha': alpha,'force_col_wise': True,}, 
                          lgb.Dataset(X_train, y_train), num_boost_round=100)
    
    model_pred=model_lgb.predict(X_test)
    mse_lgb.append(mean_squared_error(y_test,model_pred))
    r2_lgb.append(r2_score(y_test,model_pred))
    
    if alpha in [0.1,0.5,0.9]:
        qr_pred[alpha]=model_qr.predict(sm.add_constant(X_test))
        xgb_pred[alpha]=model_xgb.predict(xgb.DMatrix(X_test))
        lgb_pred[alpha]=model_lgb.predict(X_test)

分位点为0.1,0.5,0.9时记录一下,方便画图查看。

然后画出三种模型在不同分位点下的误差和拟合优度对比:

plt.figure(figsize=(7, 5),dpi=128)
plt.subplot(211)
plt.plot(alphas, mse_qr, label='Quantile Regression')
plt.plot(alphas, mse_xgb, label='XGBoost')
plt.plot(alphas, mse_lgb, label='LightGBM')
plt.legend()
plt.xlabel('Quantile')
plt.ylabel('MSE')
plt.title('MSE across different quantiles')

plt.subplot(212)
plt.plot(alphas, r2_qr, label='Quantile Regression')
plt.plot(alphas, r2_xgb, label='XGBoost')
plt.plot(alphas, r2_lgb, label='LightGBM')
plt.legend()
plt.xlabel('Quantile')
plt.ylabel('$R^2$')
plt.title('$R^2$ across different quantiles')
plt.tight_layout()
plt.show()

可以看到在分位点为0.5附件,模型的误差都比较小。因为这个数据集没有很多的异常值。然后模型表现上,LGBM>XGB>线性QR。线性模型对于一个非线性的函数关系拟合在这里当然不行。

画出拟合图:

name=['QR','XGB-QR','LGB-QR']
plt.figure(figsize=(7, 6),dpi=128)
for k,model in enumerate([qr_pred,xgb_pred,lgb_pred]):
    n=int(str('31')+str(k+1))
    plt.subplot(n)
    plt.scatter(X_test,y_test,c='k',s=2)
    for i,alpha in enumerate([0.1,0.5,0.9]):
        sort_order = np.argsort(X_test, axis=0).ravel()
        X_test_sorted = np.array(X_test)[sort_order]
        #print(np.array(model[alpha]))
        predictions_sorted = np.array(model[alpha])[sort_order]
        plt.plot(X_test_sorted,predictions_sorted,label=fr"$\tau$={alpha}",lw=0.8)
    plt.legend()
    plt.title(f'{name[k]}')
plt.tight_layout()
plt.show()

可以看到分位数回归的明显的区间特点。

还有非参数非线性方法的优势,明显XGB和LGBM拟合得更好。


波士顿数据集

上面是人工数据,下面采用真实的数据集进行对比,就用回归最常用的波士顿房价数据集吧:

data_url = "http://lib.stat.cmu.edu/datasets/boston"
raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)
data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
target = raw_df.values[1::2, 2]
column_names = ['CRIM','ZN','INDUS','CHAS','NOX','RM','AGE','DIS','RAD','TAX','PTRATIO',  'B','LSTAT', 'MEDV']
boston=pd.DataFrame(np.hstack([data,target.reshape(-1,1)]),columns= column_names)

取出X和y,划分测试集和训练集

X = boston.iloc[:,:-1]
y = boston.iloc[:,-1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

拟合预测,对比

alphas = np.arange(0.1, 1, 0.1)
mse_qr, mse_xgb, mse_lgb = [], [], []
r2_qr, r2_xgb, r2_lgb = [], [], []
qr_pred,xgb_pred,lgb_pred={},{},{}
# Train and evaluate
for alpha in alphas:
    # Quantile Regression
    model_qr = QuantReg(y_train, sm.add_constant(X_train)).fit(q=alpha)
    model_pred=model_qr.predict(sm.add_constant(X_test))
    mse_qr.append(mean_squared_error(y_test,model_pred ))
    r2_qr.append(r2_score(y_test,model_pred))
    
    # XGBoost
    model_xgb = xgb.train({"objective": "reg:quantileerror", 'quantile_alpha': alpha}, 
                          xgb.QuantileDMatrix(X_train, y_train), num_boost_round=100)
    model_pred=model_xgb.predict(xgb.DMatrix(X_test))
    mse_xgb.append(mean_squared_error(y_test,model_pred ))
    r2_xgb.append(r2_score(y_test,model_pred))
    
    # LightGBM
    model_lgb = lgb.train({'objective': 'quantile', 'alpha': alpha,'force_col_wise': True,}, 
                          lgb.Dataset(X_train, y_train), num_boost_round=100)
    
    model_pred=model_lgb.predict(X_test)
    mse_lgb.append(mean_squared_error(y_test,model_pred))
    r2_lgb.append(r2_score(y_test,model_pred))
    
    if alpha in [0.1,0.5,0.9]:
        qr_pred[alpha]=model_qr.predict(sm.add_constant(X_test))
        xgb_pred[alpha]=model_xgb.predict(xgb.DMatrix(X_test))
        lgb_pred[alpha]=model_lgb.predict(X_test)

一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

二、学习软件

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

三、入门学习视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

  • 5
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值