AVL树 平衡二叉搜索树

AVL树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度,原因在于调整后的二叉树是接近或等于完全二叉树的。

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子,右子树高度-左子树高度)的绝对值不超过1(-1/0/1)
    在这里插入图片描述
    如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在 log ⁡ 2 N \log_2^N log2N,搜索时间复杂度O( log ⁡ 2 N \log_2^N log2N)。

注意:AVL树不一定需要平衡因子使用平衡因子是一种控制实现方式。

AVL树节点的定义

AVL树节点的定义:

template<class K,class V>
struct AVLTreeNode
{
	AVLTreeNode(const std::pair<K,V>& value=std::pair<K,V>())
		:_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_bf(0)
		,_kv(value)
	{}
	AVLTreeNode<K,V>* _left;
	AVLTreeNode<K,V>* _right;
	AVLTreeNode<K,V>* _parent;
	std::pair<K,V> _kv;
	int _bf;//平衡因子
	
};

AVL树的接口

template<class K,class V>
class AVLTree
{
	typedef AVLTreeNode<K,V> Node;
private:
	Node* _root;
public:
	AVLTree()
		:_root(nullptr)
	{}
	// 中序遍历
	void InorderR()
	{
		_InorderR(_root);
	}
	bool insert(const std::pair<K, V>& kv)
	{}
private:
	void _InorderR(Node* root)
	{}
	//右旋转
	void RotateR(Node* parent)
	{}
	// 左单旋
	void RotateL(Node* parent)
	{}
	//左右双旋
	void RotateLR(Node* parent)
	{}	
	void RotateRL(Node* parent)
	{}
};

AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入过程可以分为两步:

1、按照二叉搜索树的方式插入新节点

	bool insert(const std::pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			 _root = new Node(kv);
			return true;
		}
		Node* cur = _root;
		Node* parent = nullptr;
		while (cur)//走到空结点为止
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;// 结点已存在,插入失败
			}
		}
		// 走到这里说明已经找到了结点,下面进行插入操作
		cur = new Node(kv);
		if (parent->_kv.first > kv.first)
		{
			parent->_left= cur;
		} 
		else
		{
			parent->_right = cur;
		}
		cur->_parent = parent;
	}

2、调整节点的平衡因子

正常来插入完结点后,就可以return了,但是我们要实现AVL树,我们需要检查是否满足平衡二叉树的规则,如果不满足规则我们需要对其进行调整,我们只要控制好AVL树的规则那么这棵树一定是一颗高效的搜索树。而AVL树是通过平衡因子调整来满足平衡规则。因此我们接下来需要分析当我们插入节点后,平衡因子的具体情况然后具体处理。

如何控制平衡因子?

1、 更新平衡因子---- 新增节点到根节点的祖先路劲
2、出现异样平衡因子,那么就需要旋转平衡处理

更新平衡因子最要有两种情况:

1、如果插入的是父亲左边那么父亲bf- -;
2、如果插入的是父亲右边那么父亲bf++;

更新完父亲先后,父亲的平衡因子分5种情况处理:

bf(平衡因子)分析
bf==0说明无需向上更新上面的祖先了,更新结束。说明更新之前是父亲为-1/1,现在把之前空位填上了,不会影响祖先的高度,祖先的子树高度不变祖先的平衡因子无需更新(如下样例图一所示
bf==1/-1说明更新之前是父亲为0,子树有一边变高了,那么将会影响部分祖先,需要往上更新直到祖先为0(停止更新)或等于2/-2时进行旋转处理 ,最坏的情况下有可能一直更新到根结点(如样例图二)
bf==2 /-2说明 已经是不符合平衡规则了,需要旋转处理,达到平稳状态

样例图一:

在这里插入图片描述
样例图二:

在这里插入图片描述

注意:9为新插入结点

实现代码如下:

	bool insert(const std::pair<K, V>& kv)
	{
		// 步骤一:……
		if (_root == nullptr)
		{
			 _root = new Node(kv);
			return true;
		}
		Node* cur = _root;
		Node* parent = nullptr;
		while (cur)//走到空结点为止
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;// 结点已存在,插入失败
			}
		}
		// 走到这里说明已经找到了结点,下面进行插入操作
		cur = new Node(kv);
		if (parent->_kv.first > kv.first)
		{
			parent->_left= cur;
		} 
		else
		{
			parent->_right = cur;
		}
		cur->_parent = parent;
										
		while (parent)//如果祖先为空那么无需继续操作了
		{
			if (parent->_left == cur)
			{
				parent->_bf--;
			}
			else
			{
				parent->_bf++;
			}
			
			if (parent->_bf == 0)
			{
				break;//插入后已经达到平衡条件,无需继续操作
			}
			else if (parent->_bf == -1 || parent->_bf == 1)
			{
				// 继续往上更新
				cur = parent;
				parent = parent->_parent;
			}
			// 以parent为轴点,那边矮就旋转那边
			else if (parent->_bf == -2 ||parent->_bf == 2)
			{
				//旋转处理
				// 代码……
			}
			else // 走到这里说明之前就有问题了,断言处理
			{
				assert(false);
			}
		}
	}

旋转处理

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。在此之前我们应该要知道旋转的目的以及规则。
1、旋转保持搜索树规则,控制平衡。
2、旋转的意义:这棵树平衡了,这棵树整体高度降了1。

根据节点插入位置的不同,AVL树的旋转分为四种:

注意:
我们只需要分析好4种旋转的情况,插入结点后平衡因子的情况和旋转后平衡因子的情况,就能对平衡因子正确的调整。

1. 新节点插入较高左子树的左侧—左左:右单旋

在这里插入图片描述我们把上图称之为抽象图,只有抽象图能概括具像图的所有情况,原因在于具像图有无所种情况。矩形代表一颗子树,h代表子树的高度,上图总共有a,b,c抽象出来的子树。

往a子树插入新节点,子树根节点平衡因子变成-2,进行右单旋后,旋转之后这棵树平衡了,这棵树整体高度降了1。

旋转的过程,b子树成了60的左子树,60成了30的右子树,并且旋转之后并没有破坏搜索树的规则。

初始的子树高度为h+2,插入结点后的高度为h+3,旋转之后的高度为h+2,子树的高度保持初始值,因此我们不需要更新子树的祖先平衡因子。

在这个过程中其实就是把60压入到30的子树里。

右单旋代码实现

图例:

在这里插入图片描述

//右旋转
	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;//左结点 
		Node* subLR = subL->_right;//左节点的有结点
		Node* pparent = parent->_parent;// 子树的父节点
		//下面是处理好三叉连的关系
// 旋转完成之后,30的右孩子作为双亲的左孩子
		parent->_left = subLR;
		// 如果30的左孩子的右孩子存在,更新亲双亲
		if(subLR)// 防止为空
			subLR->_parent = parent;
			
		// 60 作为 30的右孩子
		subL->_right = parent;
		
		// 更新60的双亲
		parent->_parent = subL;

		//如果成立,说明 parent==root
		if (pparent == nullptr)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (pparent->_left == parent)
			{
				pparent->_left = subL;
			}
			else
			{
				pparent->_right = subL;
			}
			subL->_parent = pparent;
		}
// 根据调整后的结构更新部分节点的平衡因子
		subL->_bf = 0;
		parent->_bf = 0;
	}

2. 新节点插入较高右子树的右侧—右右:左单旋

在这里插入图片描述实现及情况考虑可参考右单旋。
即把30压入到60的子树里。

左单旋的代码实现

图例:

在这里插入图片描述

// 左单旋
	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;//左结点 
		Node* subRL = subR->_left;//左节点的有结点
		Node* pparent = parent->_parent;
		parent->_right = subRL;
		if (subRL)// 防止为空
			subRL->_parent = parent;
		subR->_left = parent;
		parent->_parent = subR;
		if (pparent == nullptr)//parent==root
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			if (pparent->_left == parent)
			{
				pparent->_left = subR;
			}
			else
			{
				pparent->_right = subR;
			}
			subR->_parent = pparent;
		}
// 根据调整后的结构更新部分节点的平衡因子
		subR->_bf = 0;
		parent->_bf = 0;
	}

双旋处理分析

在折现的情况下是不能使用单旋进行处理的,例如:
在这里插入图片描述旋转之后并没有很好的解决。因为90是左子树高,30是右子树高,如果进行单旋,那么90会插入到30的右子树里,但是旋转后,又成了30是右边高,90是左边高。
我们发现如果要让单旋起效,我们应该要让两节点成直线转态。
例如:
在这里插入图片描述

因此,双旋其实就是要两次旋转,第一次旋转为了实现(两边成直线状态),第二次旋转使子树平衡。

3. 新节点插入较高左子树的右侧—左右:先左单旋再右单旋

在这里插入图片描述

第一步:在b子树里新增一个结点,更新平衡因子。
第二步:发现平衡因子需要双旋处理。
第三步:对30进行左单旋。
第四步:对60进行右单旋。
第五步:更新平衡因子,这里有三种情况,每种情况需要对应的去更新,因此们接下来分析三种情况。

为什么要分析三种情况?

原因在于,双旋操作会对60的子树进行瓜分,第一次旋转把b子树给了30,第二次旋转把c子树给了90。在这个基础上又因为,新增的结点可能在b/c子树里插入或者60就是新增的结点,因此双旋后的子树更新的平衡因子的值 是有三种情况的

1、当subLR插入结点后平衡因子是-1时,说明插入的结点在subLR的左子树里,左右双旋后parent、subL、subLR的平衡因子分别更新为1、0、0。
在这里插入图片描述
2、当subLR插入结点后平衡因子是1时,说明插入的结点在subLR的右子树里,左右双旋后parent、subL、subLR的平衡因子分别更新为0、-1、0。

在这里插入图片描述
3、当subLR插入结点后平衡因子是0时,说明subLR就是新增的结点,左右双旋后parent、subL、subLR的平衡因子分别更新为0、0、0。

在这里插入图片描述

代码实现

	void RotateLR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		int bf = subLR->_bf;
		RotateL(parent->_left);
		RotateR(parent);
		//3、更新平衡因子
		if (bf == 1)
		{
			subLR->_bf = 0;
			subL->_bf = -1;
			parent->_bf = 0;
		}
		else if (bf == -1)
		{
			subLR->_bf = 0;
			subL->_bf = 0;
			parent->_bf = 1;
		}
		else if (bf == 0)
		{
			subLR->_bf = 0;
			subL->_bf = 0;
			parent->_bf = 0;
		}
		else
		{
			assert(false); //在旋转前树的平衡因子就有问题
		}
	}

4. 新节点插入较高右子树的左侧—右左:先右单旋再左单旋

类似的。

在这里插入图片描述

代码实现

void RotateRL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		int bf = subRL->_bf;

		//1、以subR为轴进行右单旋
		RotateR(subR);

		//2、以parent为轴进行左单旋
		RotateL(parent);

		//3、更新平衡因子
		if (bf == 1)
		{
			subRL->_bf = 0;
			parent->_bf = -1;
			subR->_bf = 0;
		}
		else if (bf == -1)
		{
			subRL->_bf = 0;
			parent->_bf = 0;
			subR->_bf = 1;
		}
		else if (bf == 0)
		{
			subRL->_bf = 0;
			parent->_bf = 0;
			subR->_bf = 0;
		}
		else
		{
			assert(false); //在旋转前树的平衡因子就有问题
		}
	}

验证AVL树

	bool IsBalance()
	{
		return _IsBalance(_root);
	}

	int Height(Node* root)
	{
		if (root == NULL)
			return 0;
		int leftHeight = Height(root->_left);
		int rightHeight = Height(root->_right);
		return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
	}

	bool _IsBalance(Node* root)
	{
		if (root == NULL)
			return true;

		// 对当前树进行检查
		int leftHeight = Height(root->_left);
		int rightHeight = Height(root->_right);

		if (rightHeight - leftHeight != root->_bf)
		{
			cout << root->_kv.first << "现在是:" << root->_bf << endl;
			cout << root->_kv.first << "应该是:" << rightHeight - leftHeight << endl;
			return false;
		}

		return abs(rightHeight - leftHeight) < 2
			&& _IsBalance(root->_left)
			&& _IsBalance(root->_right);
	}

优化后的代码

//判断是否为AVL树
bool IsAVLTree()
{
	int hight = 0; //输出型参数
	return _IsBalanced(_root, hight);
}
//检测二叉树是否平衡
bool _IsBalanced(Node* root, int& hight)
{
	if (root == nullptr) //空树是平衡二叉树
	{
		hight = 0; //空树的高度为0
		return true;
	}
	//先判断左子树
	int leftHight = 0;
	if (_IsBalanced(root->_left, leftHight) == false)
		return false;
	//再判断右子树
	int rightHight = 0;
	if (_IsBalanced(root->_right, rightHight) == false)
		return false;
	//检查该结点的平衡因子
	if (rightHight - leftHight != root->_bf)
	{
		cout << "平衡因子设置异常:" << root->_kv.first << endl;
	}
	//把左右子树的高度中的较大值+1作为当前树的高度返回给上一层
	hight = max(leftHight, rightHight) + 1;
	return abs(rightHight - leftHight) < 2; //平衡二叉树的条件
}

总结

主要是旋转处理,旋转处理有4中情况,每一种情况大致都一样,
第一步根据插入后子树根结点的平衡因子进行某种旋转选择。
第二步旋转之后又要根据各种情况来选择更新平衡因子。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

2023框框

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值