大学物理---波函数部分

1. 德布罗意波

1.1 德布罗意波的提出

自爱因斯坦关系式:E=h\nu,p=\frac{h}{\lambda }后,德布罗意提出了新的看法:爱因斯坦解决的是在光的方面我们过分注重波动性而忽略了粒子性,那在实物粒子(一般指电子)上,我们是否过分注重粒子性而忽略了波动性呢?于是他提出:\nu = \frac{E}{h},\lambda = \frac{h}{p}虽然形式上就是爱因斯坦关系式的改写,但物理意义却截然不同!

在德布罗意提出这个观点后,大家可能觉得还是对,就做实验验证,只需要证明电子的波动性就是了,那就做一些波动性实验呗,所以几年之后有了著名的戴维孙-革末,电子双缝衍射等著名实验,无疑证实了这种猜想。

1.2 物质波的提出

但是如何解释电子的波动性呢?以衍射为例,明纹的地方代表电子多,或者说电子出现的概率大,暗纹的地方电子少,代表电子出现的概率低。可见:电子在某个地方出现的概率和波的衍射强弱成正比。物质波不是说粒子以波的形式运动,而是说粒子在各处出现的概率服从波的规律,物质波是概率波!dp: \alpha \left | \Psi \right |^2dV

1.3 波函数

结合波动方程:y = Acos[2\pi(\nu t-\frac{x}{\lambda})], 复函数形式为:y = Ae^{-i2\pi(\nu t - \frac{x}{\lambda})}代入德布罗意提出的频率和波长可得一维自由粒子!! 一维自由粒子!! 一维自由粒子!! 一维自由粒子!!\Psi = \Psi_{0}e^{-2\frac{i}{h'}(Et-xp)},这里的h'h' = h/2\pi为约化普朗克常量。因为我们已经分析了电子出现的概率和波的强度成正比,实物粒子波的强度用波函数取模来表示,即\left | \Psi \right |^2 = \Psi\cdot\Psi^{*},考虑到你的空间越大,粒子出现的概率越大,如果全空间来看,概率就是1,所以概率看来还与研究的体积有关,即dp:\alpha\left | \Psi \right |^2 dV,除以dV即得到单位体积内的概率,即概率密度:\rho = \left | \Psi \right |^2:在某个位置附近单位体积内粒子出现的概率!

因为是概率密度函数,所以满足:

1. 波函数的标准化条件:连续,单值, 有限。

2. 归一化条件。\int \left | \Psi \right |^2dV=1

2. 不确定关系

\Delta x\cdot \Delta p \geq \frac{h}{2} (\frac{h'}{2})(h)\Delta E \cdot \Delta \tau \geq h(..)(..)

取最简单的简谐波,波长一定,即不确定度为0,但是它无限延伸,即x方向不确定度为无穷。

取一个峰或一条很紧密的线,位置一定,即位置不确定度为0,但傅里叶展开后这个东西可以有无限多个正弦构成,λ不确定度无穷,即动量不确定度无穷。

注意:在动量和位置不确定度时,如果右边取h且取等号确实有\Delta x = \frac{h}{\Delta p}, 但如果知道波长变化,切不可以用\Delta p = \frac{h}{\Delta \lambda},二者没有这样的关系,只有微分关系:p = \frac{h}{\lambda}\rightarrow \rightarrow dp = -\frac{1}{\lambda ^2}d\lambda\rightarrow \rightarrow dp = \frac{1}{\lambda ^2}d\lambda,最后那里取了绝对值,因为关心正负,只关心范围。

3. 薛定谔方程

薛定谔给出了波函数应当满足的方程,其中包含周围势函数V(即粒子不自由),且势函数也是个位置,时间的函数。如果势函数不随时间变化,则可以得到定态薛定谔方程,表示粒子概率不随时间改变而改变的情况,这样的情况叫定态。考虑一维即满足:\frac{\partial^2 \Psi}{\partial x^2} + \frac{2m}{h'^2}(E-V)\Psi = 0

4. 一维无限深势阱下的粒子

此时势函数V满足在0--a内为0,在其余地方为∞,故叫无限深势阱。解这个定态薛定谔方程\frac{\partial^2 \Psi}{\partial x^2} + \frac{2m}{h'^2}E\Psi = 0,令k^2 = \frac{2mE}{h'^2},应用连续,归一化解出:k =\frac{n\pi}{a}, \Psi_{n}(x) =\sqrt{\frac{a}{2}} sin\frac{n\pi}{a}x,(n=1,2,3...),故概率密度函数\rho _{n} = \frac{2}{a}sin^2(\frac{n\pi}{a}x)注意到k^2 = \frac{2mE}{h'^2}

我们得到E_{n} = \frac{h^2}{8ma^2}\cdot n^2\rightarrow \rightarrow E_{n} = n^2 E_{1}。 

5. 势垒贯穿(隧道效应)

现实世界中,一个人可以跳10m,那么面对一堵20m的墙,几乎跳不过去,但在微观世界,这样的事情有概率发生!

  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值