圆筒导热微分方程即经典导热问题(无/有内热源)

1.圆筒导热微分方程

\rho c\frac{\partial t}{\partial \tau}=\frac{1}{r}\frac{\partial }{\partial r}(\lambda r\frac{\partial t}{\partial r})+ \frac{1}{r^2}\frac{\partial }{\partial \phi}(\lambda \frac{\partial t}{\partial \phi})+ \frac{\partial }{\partial z}(\lambda \frac{\partial t}{\partial z})+\mathbf{\dot{\phi}}

2.通过圆筒壁的导热

假设内外半径分别为r1,r2,其内外表面温度维持均匀恒定的t1,t2,假设导热系数为常数。

则导热微分方程为:

\frac{d}{dr}(r\frac{dt}{dr})=0

边界条件为:

\left\{\begin{matrix}r=r_1,t=t_{1} \\ r=r_{2},t=t_{2} \end{matrix}\right.

对上述导热微分方程连续积分得到:

t=C_{1}\mathbf{ln}r+C_{2}

利用边界条件求解常数:

\begin{matrix}C_{1}=\frac{t_{2}-t_{1}}{\mathbf{ln}(r_{2}/r_{1})} \\ C_{2}=t_{1}-\mathbf{ln}r_{1}\frac{t_{2}-t_{1}}{\mathbf{ln}(r_{2}/r_{1})} \end{matrix}

代入后得到温度分布:

t=t_{1}+\mathbf{ln}(r/r_{1}) \cdot \frac{t_{2}-t_{1}}{\mathbf{ln}(r_{2}/r_{1})}

求导并代入傅里叶定律得到热流密度:

q=\frac{\lambda}{r}\frac{t_{1}-t_{2}}{\mathbf{ln}(r_{2}/r_{1})}

可见,在圆筒中,热流密度是随着半径成反比的。下面计算热流量并考虑一下热阻:

\begin{matrix}\phi=\frac{2\pi \lambda l(t_{1}-t_{2})}{\mathbf{ln}(r_{2}/r_{1})} \\ r=\frac{\mathbf{ln}(r_{2}/r_{1})}{2\pi \lambda l} \end{matrix}

热阻在后面计算当中还会进一步使用。如根据热阻和热流量的乘积可以计算出温差。

3.具有内热源的圆柱导热

具有内热源的圆柱,其半径为r1,外表面维持在均匀的t1温度,导热系数为常数,则导热微分方程此时为:

\frac{1}{r}\frac{d}{dr}(r\frac{dt}{dr})+\frac{\dot{\phi}}{\lambda}=0

边界条件为:根据对称性得到的在中心热流密度为0,以及表面温度为t1。

首先进行第一次积分,得到

r\frac{dt}{dr}+\frac{\dot{\phi}}{2\lambda}r^2=C_{1}

代入第一个边界条件得到C1为0,进一步积分得到:

t=-\frac{\dot{\phi}}{4\lambda}r^2+C_{2}

代入第二个边界条件求出C2后,代入温度分布可得到:

t-t_1=\frac{\dot{\phi}}{4\lambda}(r^2_{1}-r^2)

4.我的感受

自学传热学,理解及其浅薄,请多指教。

  • 8
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值