圆筒导热微分方程中角度项除了一个r的理解

0.问题的提出

在圆筒导热微分方程那里,我自己推导的和教材上的结果,在角度eq?%5Cphi上那里,差了一个eq?%5Cfrac%7B1%7D%7Br%7D。仔细翻书发现是自己的理解有问题。

1.曲线坐标系

实际上是对曲线坐标系和单位向量不理解。对于传统坐标系,即用eq?%28x_%7B1%7D%2Cx_%7B2%7D%2Cx_%7B3%7D%29来表示坐标,假如我们采用了某种坐标变换,通过eq?%28u_%7B1%7D%2Cu_%7B2%7D%2Cu_%7B3%7D%29来进行表示了。且具有一对一的关系。即eq?x_%7B1%7D%3Dx_%7B1%7D%28u_%7B1%7D%2Cu_%7B2%7D%2Cu_%7B3%7D%29。那么如何表示矢量dx?一步一步来,先从单个方向的x表示起走,可以用如下式子进行表示:

eq?dx_%7B1%7D%3D%5Cfrac%7B%5Cpartial%20x_%7B1%7D%7D%7B%5Cpartial%20u_%7B1%7D%7Ddu_%7B1%7D+%5Cfrac%7B%5Cpartial%20x_%7B1%7D%7D%7B%5Cpartial%20u_%7B2%7D%7Ddu_%7B2%7D+%5Cfrac%7B%5Cpartial%20x_%7B1%7D%7D%7B%5Cpartial%20u_%7B3%7D%7Ddu_%7B3%7D

对于矢量x,则有:

eq?d%5Cvec%7Bx%7D%3D%5Cfrac%7B%5Cpartial%20%5Cvec%7Bx%7D%7D%7B%5Cpartial%20u_%7B1%7D%7Ddu_%7B1%7D+%5Cfrac%7B%5Cpartial%20%5Cvec%7Bx%7D%7D%7B%5Cpartial%20u_%7B2%7D%7Ddu_%7B2%7D+%5Cfrac%7B%5Cpartial%20%5Cvec%7Bx%7D%7D%7B%5Cpartial%20u_%7B3%7D%7Ddu_%7B3%7D

也可以表示为:

eq?dx_%7Bi%7D%3D%5Cfrac%7B%5Cpartial%20x_%7Bi%7D%7D%7B%5Cpartial%20u_%7Bj%7D%7Ddu_%7Bj%7D

其中,j为1,2,3;i遍历1,2,3。

类似于一般的坐标系,对于u1,u2,u3他们三个肯定是独立的,也就是说,一定有u1为定值的一个面,也有u2为定值的一个面,也有u3为定值的一个面。那么当u2和u3都为定值,他们的交线是什么呢??第一,肯定有交线,否则u2和u3是平行的,根本不要拿来当作基本坐标方向了;第二,这个交线就是u2,u3为定值,u1为变量的一条线。

可能会有人觉得毫无意义,“u2,u3为定值,u1为变量的一条线”不是在放屁吗?但是仔细想想,这不就是导数的定义吗??对u1求导,不就是保持其余两个不变吗?

所以我们可以得到矢量x在u1方向的单位矢量:

h_%7B1%7D

eq?h_%7B1%7D%3D%5Cleft%20%7C%20%5Cfrac%7B%5Cpartial%20%5Cvec%7Bx%7D%7D%7B%5Cpartial%20u_%7B1%7D%7D%20%5Cright%20%7C

h1是一个标量,这点需要注意。接着我们可以写出dx的表达式:

eq?d%5Cvec%7Bx%7D%3Dh_%7B1%7D%5Cvec%7Be_%7B1%7D%7Ddu_%7B1%7D+h_%7B2%7D%5Cvec%7Be_%7B2%7D%7Ddu_%7B2%7D+h_%7B3%7D%5Cvec%7Be_%7B3%7D%7Ddu_%7B3%7D

当在u1上发生了du1的变化时,对于矢量x,在e1方向上,其会发生eq?h_%7B1%7Ddu_%7B1%7D的变化。为何如此?为什么一个u1发生变化,居然会引起h乘以du1这么多的变化,为什么要乘以h??

可以这么理解,这个u1不一定就是常见的线段,举个简单的例子,角度。比如半径为r,角度为u1,那么当角度变化du1时,我们的矢量x走过了多少距离呢?rdu!

2.梯度的表示:

对于梯度:常规表达式为:eq?df%3D%5Cbigtriangledown%20f%5Ccdot%20d%5Cvec%7Bx%7D,f为某一个函数;现在我们把x用u来表示,就可以得到:

eq?df%3D%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u_%7B1%7D%7Ddu_%7B1%7D+%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u_%7B2%7D%7Ddu_%7B2%7D+%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u_%7B3%7D%7Ddu_%7B3%7D

eq?df%3Dh_%7B1%7D%5Ctimes%5Cfrac%7B1%7D%7Bh_%7B1%7D%7D%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u_%7B1%7D%7Ddu_%7B1%7D+h_%7B2%7D%5Ctimes%5Cfrac%7B1%7D%7Bh_%7B2%7D%7D%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u_%7B2%7D%7Ddu_%7B2%7D+h_%7B3%7D%5Ctimes%5Cfrac%7B1%7D%7Bh_%7B3%7D%7D%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u_%7B3%7D%7Ddu_%7B3%7D

eq?df%3D%28%5Cfrac%7B1%7D%7Bh_%7B1%7D%7D%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u_%7B1%7D%7D%2C%5Cfrac%7B1%7D%7Bh_%7B2%7D%7D%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u_%7B2%7D%7D%2C%5Cfrac%7B1%7D%7Bh_%7B3%7D%7D%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u_%7B3%7D%7D%29%5Ccdot%20%28h_%7B1%7Ddu_%7B1%7D%2Ch_%7B2%7Ddu_%7B2%7D%2Ch_%7B3%7Ddu_%7B3%7D%29

eq?df%3D%28%5Cfrac%7B1%7D%7Bh_%7B1%7D%7D%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u_%7B1%7D%7D%2C%5Cfrac%7B1%7D%7Bh_%7B2%7D%7D%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u_%7B2%7D%7D%2C%5Cfrac%7B1%7D%7Bh_%7B3%7D%7D%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u_%7B3%7D%7D%29%5Ccdot%20d%5Cvec%7Bx%7D

所以我们可以得到:在曲线坐标系中:

eq?%5Cbigtriangledown%20%3D%28%5Cfrac%7B1%7D%7Bh_%7B1%7D%7D%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20u_%7B1%7D%7D%2C%5Cfrac%7B1%7D%7Bh_%7B2%7D%7D%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20u_%7B2%7D%7D%2C%5Cfrac%7B1%7D%7Bh_%7B3%7D%7D%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20u_%7B3%7D%7D%29

以柱坐标为例子,这种坐标变换为:

eq?x_%7B1%7D%3Drcos%5Cphi%2Cx_%7B2%7D%3Drsin%5Cphi%2Cx_%7B3%7D%3Dz

现在我们用eq?r%2C%5Cphi%2Cz来进行表示。先计算出h。

对于r来说:

eq?h_%7Br%7D%3D%5Cleft%20%7C%20%5Cfrac%7B%5Cpartial%5Cvec%7Bx%7D%7D%7B%5Cpartial%20r%7D%20%5Cright%20%7C

把矢量x用x1,x2,x3代替后:

eq?h_%7Br%7D%3D%5Csqrt%7B%28%5Cfrac%7B%5Cpartial%20x_%7B1%7D%7D%7B%5Cpartial%20r%7D%29%5E2+%28%5Cfrac%7B%5Cpartial%20x_%7B2%7D%7D%7B%5Cpartial%20r%7D%29%5E2+%28%5Cfrac%7B%5Cpartial%20x_%7B3%7D%7D%7B%5Cpartial%20r%7D%29%5E2%7D

eq?h_%7Br%7D%3D%5Csqrt%7B%28cos%5E2%5Cphi+sin%5E2%5Cphi+0%29%7D%3D1

对于z:

eq?h_%7Bz%7D%3D%5Csqrt%7B%28%5Cfrac%7B%5Cpartial%20x_%7B1%7D%7D%7B%5Cpartial%20z%7D%29%5E2+%28%5Cfrac%7B%5Cpartial%20x_%7B2%7D%7D%7B%5Cpartial%20z%7D%29%5E2+%28%5Cfrac%7B%5Cpartial%20x_%7B3%7D%7D%7B%5Cpartial%20z%7D%29%5E2%7D

eq?h_%7Bz%7D%3D%5Csqrt%7B%280+0+1%29%7D%3D1

对于eq?%5Cphi

eq?h_%7B%5Cphi%7D%3D%5Csqrt%7B%28%5Cfrac%7B%5Cpartial%20x_%7B1%7D%7D%7B%5Cpartial%20%5Cphi%7D%29%5E2+%28%5Cfrac%7B%5Cpartial%20x_%7B2%7D%7D%7B%5Cpartial%20%5Cphi%7D%29%5E2+%28%5Cfrac%7B%5Cpartial%20x_%7B3%7D%7D%7B%5Cpartial%20%5Cphi%7D%29%5E2%7D

eq?h_%7B%5Cphi%7D%3D%5Csqrt%7B%28r%28-sin%5Cphi%29%29%5E2+%28rcos%5Cphi%29%5E2+0%7D%3Dr

所以在柱坐标系里面,矢量x发生变化可以表示为:

eq?d%5Cvec%7Bx%7D%3D1%5Ctimes%5Cvec%7Be_%7B1%7D%7Ddr+1%5Ctimes%5Cvec%7Be_%7B2%7D%7Ddz+r%5Ctimes%5Cvec%7Be_%7B3%7D%7Dd%5Cphi

对于梯度,代入柱坐标系统有:

eq?%5Cbigtriangledown%20f%3D%28%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20r%7D%2C%5Cfrac%7B1%7D%7Br%7D%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20%5Cphi%7D%2C%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20z%7D%29

3.问题的解决

所以在圆筒导热微分方程里面,根据热流密度的定义:

eq?%5Cvec%7Bq%7D%3D-%5Clambda%5Cmathbf%7B%20grad%7D%20t

传统坐标系上:

eq?%5Cbigtriangledown%20t%3D%28%5Cfrac%7B%5Cpartial%20t%7D%7B%5Cpartial%20x%7D%2C%5Cfrac%7B%5Cpartial%20t%7D%7B%5Cpartial%20y%7D%2C%5Cfrac%7B%5Cpartial%20t%7D%7B%5Cpartial%20z%7D%29

柱坐标系上:

eq?%5Cbigtriangledown%20t%3D%28%5Cfrac%7B%5Cpartial%20t%7D%7B%5Cpartial%20r%7D%2C%5Cfrac%7B1%7D%7Br%7D%5Cfrac%7B%5Cpartial%20t%7D%7B%5Cpartial%20%5Cphi%7D%2C%5Cfrac%7B%5Cpartial%20t%7D%7B%5Cpartial%20z%7D%29

在角度φ上,就应该是

eq?q%3D-%5Clambda%5Ctimes%5Cfrac%7B1%7D%7Br%7D%5Cfrac%7B%5Cpartial%20t%7D%7B%5Cpartial%20%5Cphi%7D

所以分母确实应该多一个r。

4球坐标系统:

对于球坐标系:其坐标变换为:

\begin{pmatrix} x=rsin\theta cos\phi \\ y=rsin\theta sin\phi \\ z=rcos\theta\ \end{pmatrix}

相应的h为:

h_{\theta}=\left | \frac{\partial \mathbf{x}}{\partial \theta} \right |= \left | (rcos\theta cos\phi,rcos\theta sin\phi,-rsin\theta) \right |=r

h_{\phi}=\left | \frac{\partial \mathbf{x}}{\partial \phi} \right | =\left | (-rsin\phi sin\theta,rcos\phi sin\theta,0) \right |=rsin\theta

h_{r}=\left | \frac{\partial \mathbf{x}}{\partial r} \right | =\left | (sin\theta cos\phi,sin\theta sin\phi ,cos\theta) \right |=1

微元体的体积为:

d\mathbf{V}=h_{r}h_{\phi}h_{\theta}drd\phi d\theta=r^2sin\theta drd\theta d\phi

所以,在球坐标系中(r,\phi,\theta),单位向量为\mathbf{e_{r},e_{\phi},e_{\theta}},则梯度为:

\bigtriangledown =(\frac{1}{h_{r}}\frac{\partial}{\partial r}, \frac{1}{h_{\phi}}\frac{\partial}{\partial \phi}, \frac{1}{h_{\theta}}\frac{\partial}{\partial \theta})

\bigtriangledown =(1\times\frac{\partial}{\partial r}, \frac{1}{rsin\theta}\times\frac{\partial}{\partial \phi}, \frac{1}{r}\times\frac{\partial}{\partial \theta})

5.自己的感受

我在写导热微分方程时,对任意方向上的热流密度都喜欢用:eq?q%3D-%5Clambda%5Cfrac%7B%5Cpartial%20t%7D%7B%5Cpartial%20n%7D%5Cvec%7Bn%7D来写,因为书上这么写的,但现在我觉得应该回到更上一层的定义,即eq?%5Cvec%7Bq%7D%3D-%5Clambda%5Cmathbf%7B%20grad%7D%20t

自学传热学,很多地方理解不透彻,希望大家多多指教。

  • 11
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值