浅谈传热学中温度分布曲线的凹凸分析

传热学主要研究的是热的传递问题,通常要求能掌握物体的温度分布,如何快速地判断一个温度曲线的凹凸性,是一项建议掌握的技巧。本文将从通过几个具体案例分析向大家介绍方法。

1、巧用傅里叶定律

傅里叶导热定律是最基本的描述热的方程,看似简单,使用它便能最迅速地判断出来。(t_1大于t_2

\phi =-\lambda A \frac{t_{1}-t_{2}}{\delta }

  (1)变化的截面:圆柱导热对数曲线

  圆柱导热是经典的变截面A(x)问题。首先,假设t_1>t_2,通过圆柱的热流量Φ大小恒定,圆柱的半径由内向外增大,所以侧表面积A增大,λ是定值, 可推导出\frac{ t_1 -t_2}{r_2-r_1}下降,我们可以微分化处理,那么\frac{ t_1 -t_2}{r_2-r_1}=\frac{ \Delta t}{\Delta r}=\frac{dt}{dr}表示曲线的斜率,斜率随着半径的增大而减小,可以判断是①曲线

 (2)变化的\lambda

λ是导热系数,一般工程计算中为了简化计算,我们将它看做常数。实际上,也存在变导热系数的情况。

 对于\lambda=\lambda_0(1+bt)的情形,分析如下:

①曲线:随着x横坐标的增大,\frac{dt}{dx}减小,热流量\Phi不变,由傅里叶导热定律得,λ随x的增大而增大,又t随x的增大而减小,所以λ随t的增大而减小                         故b<0

② 曲线:随着x横坐标的增大,\frac{dt}{dx}不变,热流量\Phi不变,由傅里叶导热定律得,λ随x的增大恒定不变,λ是定值                                                                               故b=0

③曲线:随着x横坐标的增大,\frac{dt}{dx}增大,热流量\Phi不变,由傅里叶导热定律得,λ随x的增大而减小,又t随x的增大而减小,所以λ随t的增大而增大                         故b>0

  (3)变截面问题

如图所示,是一个圆台,左端面温度为t_{w1},右端面温度为t_{w2},其他为绝热条件,右侧是它的等温线。 大家有没有考虑过,为什么等温线是向左侧突出的弧形?为什么在右侧的等温线更密?使用傅里叶定律我们变可以解答,分析如下:

\Phi=-\lambda A\frac{dt}{dx}

随着x的增大,截面积A减小,λ和Φ不变,所以\frac{dt}{dx}增大,假设t_{w1}>t_{w2},我们可以得到温度变化的大致图像

 等温线越密的地方,温度变化越快,因此,我们知道右侧等温线更密集。

对于该圆台传热,任取过轴线的截面分析,可以画成三个部分,我们可以看作是并联的三块热阻,如下图所示:

 在同一与轴线垂直的截面上,Ⅱ部分的温度总是低于Ⅰ、Ⅲ部分的,所以曲线向左突起。

2、利用温度解析式

如果可以直接得到温度解析式,那么可以通过解析式直接判断曲线的凹凸性。例如的曲线分布。

肋的温度解析式为

\theta =\theta_0\frac{ch[m(x-H)]}{ch(mH)}

对过余温度\theta求导,有

\frac{d\theta}{dx}=\theta_0m\frac{sh[m(x-H)]}{ch(mH)}

对于双曲正弦函数shx的变化趋势大致为

 由图可知,随着x的增大,shx也增大。又x-H<0,随着x的增大,x-H也增大,sh(x-H)增大但是sh(x-H)<0,所以\left | \frac{d\theta}{dx} \right |减小,肋片温度分布示意图为

 注:本文案例来源于13.2.6 典型一维稳态导热分析解举例(下)通过圆筒壁及球壳的导热(P13)_哔哩哔哩_bilibili

以及王秋旺老师的《传热学:重点难点及典型题精解》

 思路全为作者独立创作,如有雷同,纯属巧合。

部分图片来源百度,侵删。

  • 11
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值