1.是非题(认为该题正确,在括号中打√;该题错误,在括号中打×。)(每小题2分)
(1)薄板小挠度弯曲时,体力可以由薄板单位面积内的横向荷载q来等代。 ( )
(2)对于常体力平面问题,若应力函数
满足双调和方程
确定的应力分量必然满足平衡微分方程。 ( )
(3)在求解弹性力学问题时,要谨慎选择逆解法和半逆解法,因为解的方式不同,解的结果会有所差别。 ( )
(4)如果弹性体几何形状是轴对称时,就可以按轴对称问题进行求解。 ( )
(5)无论是对于单连通杆还是多连通杆,其截面扭矩均满足如下等式:
为扭转应力函数。 ( )
(6)应变协调方程的几何意义是:物体在变形前是连续的,变形后也是连续的。 ( )
(7)平面应力问题和平面应变问题的应变协调方程相同,但应力协调方程不同。 ( )
(8)对于两种介质组成的弹性体,连续性假定不能满足。 ( )
(9)位移变分方程等价于以位移表示的平衡微分方程及以位移表示的静力边界条件。( )
(10)三个主应力方向一定是两两垂直的。 ( )
2.填空题(在每题的横线上填写必要的词语,以使该题句意完整。)(共20分,每小题2分)
(1)弹性力学是研究弹性体受外界因素作用而产生的 的一门学科。
(2)平面应力问题的几何特征是: 。
(3)平衡微分方程则表示物体 的平衡,应力边界条件表示物体 的平衡。
(4) 在通过同一点的所有微分面中,最大正应力所在的平面一定是 。
(5)弹性力学求解过程中的逆解法和半逆解法的理论基础是: 。
(6)应力函数
如果能作为应力函数,其
的关系应该是 。
(7)轴对称的位移对应的 一定是轴对称的。
(8)瑞利-里兹法的求解思路是:首先选择一组带有待定系数的、满足 的位移分量,由位移求出应变、应力,得到弹性体的总势能,再对总势能取极值。
(9)克希霍夫的直法线假设是指:变形前垂直于薄板中面的直线段(法线)在变形后仍保持为直线,并垂直于变形后的中面,且 。
(10)一般说来,经过简化后的平面问题的基本方程有 个,但其不为零的应力、应变和位移分量有 个。
3. 分析题(共20分,每题10分)
(1)曲梁的受力情况如图1所示,请写出其应力边界条件(固定端不必写)。
图1
(2)一点应力张量为
已知在经过该点的某一平面上应力矢量为零,求
及该平面的单位法向矢量。
4.计算题(共40分)
(1)图2中楔形体两侧受均布水平压力q作用,求其应力分量(体力为零)。提示:设应力函数为:
(10分)
图2
(2) 如图3所示的悬臂梁结构,在自由端作用集中力P,不计体力,弹性模量为E,泊松比为μ,应力函数可取
,试求应力分量。(15分)
图3
\* MERGEFORMAT
(3) 如图4所示,简支梁受均布荷载
;(2)
。比较两种挠度函数计算结果间的差异。(15分)
图4
1.是非题(认为该题正确,在括号中打√;该题错误,在括号中打×。)(每小题2分)
(1)薄板小挠度弯曲时,体力可以由薄板单位面积内的横向荷载q来等代。 (√)
(2)对于常体力平面问题,若应力函数
满足双调和方程
,那么由
确定的应力分量必然满足平衡微分方程。 (√)
(3)在求解弹性力学问题时,要谨慎选择逆解法和半逆解法,因为解的方式不同,解的结果会有所差别。 (×)
(4)如果弹性体几何形状是轴对称时,就可以按轴对称问题进行求解。 (×)
(5)无论是对于单连通杆还是多连通杆,其载面扭矩均满足如下等式:
,其中
为扭转应力函数。 (×)
(6)应变协调方程的几何意义是:物体在变形前是连续的,变形后也是连续的。 (√)
(7)平面应力问题和平面应变问题的应变协调方程相同,但应力协调方程不同。 (√)
(8)对于两种介质组成的弹性体,连续性假定不能满足。 (×)
(9)位移变分方程等价于以位移表示的平衡微分方程及以位移表示的静力边界条件。(√)
(10)三个主应力方向一定是两两垂直的。 (×)
2.填空题(在每题的横线上填写必要的词语,以使该题句意完整。)(共20分,每小题2分)
(1)弹性力学是研究弹性体受外界因素作用而产生的 应力、应变和位移 的一门学科。
(2)平面应力问题的几何特征是: 物体在一个方向的尺寸远小于另两个方向的尺寸 。
(3)平衡微分方程则表示物体 内部 的平衡,应力边界条件表示物体 边界 的平衡。
(4) 在通过同一点的所有微分面中,最大正应力所在的平面一定是 主平面 。
(5)弹性力学求解过程中的逆解法和半逆解法的理论基础是: 解的唯一性定律 。
(6)应力函数
如果能作为应力函数,其
的关系应该是
。
(7)轴对称的位移对应的几何形状和受力 一定是轴对称的。
(8)瑞利-里兹法的求解思路是:首先选择一组带有待定系数的、满足 位移边界条件或几何可能 的位移分量,由位移求出应变、应力,得到弹性体的总势能,再对总势能取极值。
(9)克希霍夫的直法线假设是指:变形前垂直于薄板中面的直线段(法线)在变形后仍保持为直线,并垂直于变形后的中面,且 长度不变 。
(10)一般说来,经过简化后的平面问题的基本方程有8个,但其不为零的应力、应变和位移分量有9个。
3. 分析题(共20分,每题10分)
(1)
主要边界:
次要边界:
(2) 一点的应力张量与该点的任意斜面上各应力分量的关系为:
及
故有
及
解得:
由此得:
4.计算题(共40分)
(1) 解:极坐标下的应力分量为:
应力边界条件为:
将应力分量代入边界条件,可解得:
所以应力分量解答为:
(2) 解:由题可知,体力X=0,Y=0,且为弹性力学平面应力问题。
1)、本题所设应力函数满足双调和方程:
(a)
2)、应力分量为:
(b)
3)、用应力边界条件求待定常数A、B、C、D:
应力边界条件,在上、下表面
处,必须精确满足:
(c)
则有:
(d)
X=0的左边界为次要边界,利用圣维南原理则有:
X方向力的等效:
;
对0点的力矩等效:
;
Y方向力的等效:
。
将式(b)代入上式得:
(e)
联立式(d)和式(e),解得:
;
(4)、应力分量为:
(3) 解:
1)挠度函数取为:(1)
梁的总势能为
对总势能求驻值
得
回代即得梁的挠度函数
令
,则有跨中挠度
2)挠度函数取为:
梁的总势能为
对总势能求驻值
得
回代并令
,即得梁的跨中挠度
两种挠度函数假定下相差为 b。
完毕
同济大学本科课程期终考试(考查)统一命题纸 B卷
2006—2007学年第 一 学期
课程名称:弹性力学 课号: 任课教师:
专业年级: 学号: 姓名:
考试(√)考查( ) 考试(查)日期: 2007 年1月 22 日
出考卷教师签名:朱合华、许强、王君杰、李遇春、陈尧舜、邹祖军、赖永瑾、蔡永昌
教学管理室主任签名:
1、 图1中楔形体顶端受水平集中力P作用,求其应力分量(体力为零)。提示:设应力函数为:
(20分)
图1
2、如图2所示的悬臂梁结构,在自由端有一个微小的垂直位移Δ,不计体力,弹性模量为E,泊松比为μ,应力函数可取
,试求应力分量。(20分)
图2
\* MERGEFORMAT
3、 图3所示悬臂梁,截面抗弯刚度EI,梁长L,竖向弹簧刚度k;悬臂端受集中荷载F作用。试用瑞雷-李兹法求解悬臂端挠度和固定端弯矩。提示:梁的挠度函数可选为:
(20分)
图3
4、图4所示材料密度为ρ的三角形截面坝体,一侧受静水压力,水的密度为ρ1,另一侧自由。设坝中应力状态为平面应力状态:
请利用平衡方程和边界条件确定常数
和
。(20分)
|
图4 |
|
5、如图5所示的半无限平面,证明应力
为本问题的解答。(20分)
同济大学本科课程期终考试(考查)统一命题纸 B卷 标准答案
2006—2007学年第 一 学期
1、解:极坐标下的应力分量为:
两斜面应力边界条件为:
自动满足
由隔离体平衡条件:
将应力分量代入上面二式,可解得:
所以应力分量解答为:
2、 解:由题可知,体力X=0,Y=0,
且为平面应力问题。
1)、本题所设应力函数满足双调和方程:
(a)
2)、应力分量为:
(b)
3)、由物理方程得应变分量为:
(c)
4)、由几何方程得出位移分量为:
(d)
由式(d)的前两式积分得:
(e)
将上式(e)代入式(d)的第三式,整理得:
(f)
欲使上式恒等地成立,只能令
(g)
其中,常数a,b满足
(h)
解式(g)得:
(i)
则位移分量为:
(j)
5)、由应力边界条件和位移边界条件求待定常数A、B、C1、C2和a、b:
应力边界条件,在上、下表面
处,必须精确满足:
(k)
则有:
(l)
位移边界条件,
,
,
,
则有:
(m)
联立解式(l)、式(h)和式(m)得:
(n)
6)、本题的应力分量:
应力分量为:
(o)
3、 解:
总势能为
对总势能求驻值
得
回代并令即得悬臂梁挠度函数
令
,则有悬臂端挠度为
梁弯矩为
令
,则有固定端弯矩为
完毕
4、(一)由平衡方程
(1)
得:
(2)
(二)边界条件
(3)
在边界
上:
故边界条件可写为
(4)
在边界
上:
故边界条件可写为
(5)
联合方程(2)、(3)、(4)可解得
5、证明:
(1)应力满足相容方程
代入得:
满足。
(2)满足平衡方程
将应力代入平衡方程得
满足。
(3)边界条件
将应力代入得
满足。
故其为本问题解答。
同济大学课程考核试卷(A卷)
2007 — 2008 学年第 一 学期
命题教师签名: 审核教师签名:
课号:030192 课名: 弹性力学 考试考查:考试
此卷选为:期中考试( )、期终考试(√ )、重考( )试卷
年级 专业 学号 姓名 得分
一.是非题(正确,在括号中打√;该题错误,在括号中打×。)(共20分,每小题2分)
(1)在薄板小挠度弯曲时将边界上的扭矩变换为静力等效的横向剪力,再将它与原来的横向剪力合并成总的分布剪力来处理边界条件问题。 ( )
(2)求解位移变分方程时所设的位移分量不必事先满足位移边界条件,只要满足静力边界条件即可。 ( )
(3)由弹性扭转的薄膜比拟可知,最大的剪应力应发生在横截面周界上,找到周界上斜率最大的点,就是最大剪应力所在之处,它的方向一定沿着周界在该点的切线方向。( )
(4)如果主应力
,则
的方向与
和
的方向可以垂直也可以不垂直,但
和
的方向相互必须垂直。 ( )
(5) 在轴对称问题中,与轴对称应力对应的位移一定是轴对称的。 ( )
(6) 平面问题中的应力协调方程与材料无关,应变协调方程与材料有关。 ( )
(7)对于单连通和多连通物体来说,应变分量满足应变协调方程是保证物体连续的充要条件。 ( )
(8)真实解答一定满足该弹性问题的平衡方程和物理方程。 ( )
(9)满足平衡方程的一组应力分量,也一定满足应力相容方程。 ( )
(10)开口薄壁杆的抗扭刚度比相同形状同材料、同截面积的闭口薄壁杆的抗扭刚度小。( )
二.填空题(在每题的横线上填写必要的词语,以使该题句意完整。)(共20分,每小题2分)
(1)圣维南原理:若把作用在物体 边界上的面力用另一组与它静力等效的力系来代替,则在力系作用区域的附近,应力分布将有显著的改变,但在远处所受的影响可以不计。
(2)在平面问题中,取二次多项式为应力函数,对应的应力分量为 应力状态。
(3)最小势能原理简述为:在满足 边界条件的一切 中,真正的 使总势能取最小值。
(4)用伽辽金法时所选择的位移函数式,不仅满足 条件,而且还满足 条件。
(5)过物体内某一点总可以找到三个相互垂直的方向,这三个方向的微分线段在物体变形后只有相对伸长或缩短,而且相互之间的夹角保持直角不变,该方向称为 主方向。
(6) 若已知弹性体仅受体力与面力作用,则弹性体在平衡时,体内各点的应力分量与应变分量是 的;若已知弹性体受体力与面力作用,还在部分边界上已知位移,则弹性体在平衡时,体内各点的应力、应变以及位移分量是 的。
(7)假定物体在不同方向上具有相同的物理性质,从而使应力与应变的关系不随坐标方向的改变而改变。这个假定为 假设。
(8)若t为板厚、z=0为板的中面,则薄板截面上最大正应力(绝对值)发生在薄板
处。
(9) 对于平面应变问题(z 是平面的法向),则
,但
。
\* MERGEFORMAT
(10)已知微体中主应力为
,则斜截面
上的正应力为
。
三.分析题(共20分)
1、(7分)试写出右图所示问题
的应力边界条件
2、(13分)已知弹性体某点P的应力张量为
,三个主应力之一为
,求该主应力的方向余弦和另外两个主应力。
四.计算题(共40分)
1、(13分) 下图为一悬臂梁,受均布荷载作用,梁的高度h=0.3m。设应力函数为:
\* MERGEFORMAT \* MERGEFORMAT \* MERGEFORMAT \* MERGEFORMAT \* MERGEFORMAT \* MERGEFORMAT
|
试计算A, B, C, D, E, F, G, H 的值,并求图中P (x=5m, y=0.1m)点处的各应力分量(
)。
- (12分) 下图为一具有小圆孔的平板均匀拉伸的状况,小圆孔半径为1m,
。
\* MERGEFORMAT
\* MERGEFORMAT
\* MERGEFORMAT
\* MERGEFORMAT
\* MERGEFORMAT
|
|
设应力函数为:
试计算A, B, C, D 的值,和
的应力分量
3、(15分)图示简支等截面Winkler地基梁长为
、抗弯刚度为
、基床系数为
,受均布荷载
作用。取近似挠度表达式为
。试用Ritz法求待定常数
和
。
(Winkler地基梁的总势能
)