AI定制模型的知识产权保护路径与适用策略研究

摘要:近年来,开源大模型的出现为企业定制模型提供了基础,但这一过程在法律上涉及复杂的知识产权问题。本文从多个不同法律角度,分析基于开源大模型定制生成的AI定制模型的知识产权保护路径,探讨如何平衡各方利益,设计合理的模型定制合同条款,以保护开发方和委托方的合法权益,为企业在开源AI领域的商业实践提供法律指导。

关键词:人工智能;定制模型;知识产权;授权条款;开源协议

一、引言

        随着人工智能技术的迅猛发展,大型语言模型(LLM)已成为人工智能领域最具影响力的技术之一。近年来,以BERT、LLaMA、DeepSeek等为代表的开源大模型的出现,极大地降低了企业应用AI技术的门槛,推动了AI技术在各行各业的广泛应用。在这一背景下,基于开源大模型的定制服务应运而生,许多企业和组织希望能够基于开源模型,结合自身的数据和业务需求,开发出更符合特定场景的专用模型。

        然而,这种基于开源大模型的定制服务在法律上涉及复杂的知识产权问题。当企业基于开源大模型为客户提供定制服务时,定制后的模型在法律上应以何种权利进行保护?各方在此过程中拥有哪些权利并受到哪些限制?如何设计一套既尊重原开源协议、又能保护定制服务提供商和客户利益的模型定制合同条款?这些问题不仅关系到参与各方的商业利益,也关系到开源社区的持续健康发展。

        本文将从著作权法、专利法及民法等多个法律视角,系统分析开源大模型定制成果的知识产权保护路径,比较不同保护路径下权利保护范围与限制,并在此基础上探索一套平衡各方利益的模型定制合同重点条款设计方案,为企业在开源AI领域的商业实践提供法律指导。

二、基于开源大模型的定制模型简介

(一)模型定制策略

        大语言模型的训练需要海量数据、大量训练时间以及庞大的参数规模,这使得从头开始训练一个大语言模型对于中小型团队而言几乎是不可能的任务。虽然大语言模型功能强大,但它们的开箱即用性能并不能总是满足特定的业务或领域需求。例如,在处理依赖公司内部数据的问题时,通用大语言模型就显得无能为力。正因如此,企业通常会选择基于原有大模型的基础上定制垂直领域AI模型。近年来涌现出了各种定制策略,旨在针对需要专业知识的场景对模型进行优化。

        根据资源消耗程度,我们将定制化策略分为以下六种,从低到高依次为:提示工程、解码和采样策略、检索增强生成、代理、微调、基于人类反馈的强化学习

        1.提示工程(Prompt Engineering)

图1 提示工程

        提示工程是在定制模型过程中,通过精心设计输入给模型的提示,以引导模型生成更加准确、相关和符合需求的回答。提示可以由指令、上下文、输入数据和输出指示组成。通过明确、详细的提示,帮助模型更好地理解任务,提升输出的质量和效率。

        2.解码与采样策略(Decoding and Sampling Strategy)

图2 解码与采样策略

        解码与采样策略是通过改变模型在生成文本时对候选词汇的选择方式,达到特定的输出效果。具体来说,通过设置特定的采样参数或解码规则,灵活控制模型生成文本的风格、多样性和准确性,使之更加贴合具体的业务需求或场景。这种策略调整不需要重新训练模型,只需针对特定任务或目标调整输出规则,即可实现定制化的模型效果。

        3.检索增强生成(Retrieval Augmented Generation, RAG)

图3 检索增强生成

        检索增强生成是一种将大语言模型与外部知识源的检索相结合,以改进问答能力的工程框架。它能够集成外部知识,并减少大语言模型在处理特定领域或专业查询时常见的“幻觉”问题。检索增强生成可以动态地从知识领域中提取相关信息,通常无需进行大量训练来更新大语言模型的参数,是一种将通用大语言模型适配到特定领域的经济高效策略。

        4.代理(Agent

图4 代理

        代理(又称“智能体”)通过赋予模型自主决策和任务执行能力,使其能够分解复杂问题、调用工具并动态调整策略。其可以根据用户指定的任务进行多轮思考,并给出任务的执行步骤和方法,最终通过调用外部接口或方法实现任务。这种设计突破了传统模型的被动响应模式,在客服、数据分析等场景中,允许单个模型通过代理协同机制,形成具备目标导向、自我纠错和持续演进的智能体系统。

        5.微调(Fine-Tuning)

图5 微调

        微调是在已经预训练好的大语言模型基础上,使用新的、特定任务相关的数据集对模型进行进一步训练的过程。这种微调技术的主要目的是使模型能够适应新的、具体的任务或领域,而无需从头开始训练一个全新的模型。

        6.基于人类反馈的强化学习(RLHF)

图6 基于人类反馈的强化学习

        基于人类反馈的强化学习是一种强化学习技术,它根据人类偏好对大语言模型进行微调。其通过基于人类反馈训练奖励模型,并将该模型作为奖励函数,使用近端策略优化(PPO)来优化强化学习策略。

(二)定制模型的组成部分

        一个完整的AI定制模型(又称“定制模型”)作为系统性工程体系,通常需要综合多个关键组成部分,包括:源代码、算法、模型架构、训练方法、文档、用户界面设计。而数据预处理与特征工程、接口系统虽然不属于AI模型的组成部分,但是对于其训练、应用有着重要作用,故也在此处进行介绍。定制模型中的每个组成部分都有其独特的角色和功能,同时又紧密协作、相互依赖,形成一个有机的整体。

        1.源代码

        源代码是定制模型的基石,它是由程序员使用特定编程语言编写的一系列指令和逻辑。通过源代码,开发者实现了模型的算法和架构,将抽象的思路变成具体的可执行程序。例如,可以通过编写源代码来定义神经网络的结构、数据处理流程等。

        2.算法

        算法是支撑定制模型智能行为的核心理念,指的是为完成特定任务而设计的一系列明确的步骤和规则。例如,在机器学习领域,常见的算法有决策树算法、神经网络算法等。每种算法提供了一种让模型从数据中学习或进行推理的方法。

        但是,光有算法(理论方法)还不够,它需要通过源代码实现,并在训练过程中应用才能变成真正有用的模型。换句话说,算法是抽象的步骤方案,而源代码将其具体化为计算机可执行的指令,二者结合才能赋予模型实际的功能。

        经由训练得到的模型本身可以看作是算法作用于数据的产物(算法提供规则,模型则是遵循这些规则学到的知识结构)。在定制模型时,开发者会根据任务选择或设计合适的算法,然后用源代码实现并训练它。因此,算法选择的好坏直接影响定制模型的效率和效果。

        3.模型架构

        模型架构是模型的“骨架”,即模型内部各组成部分是如何组织和连接的,它决定了模型的层次结构和信息流动方式。模型架构通常指神经网络的层次结构——有多少层神经元,每层如何连接,采用何种计算单元等等。例如,卷积神经网络(CNN)与循环神经网络(RNN)就是不同的架构,它们适用于处理不同类型的数据(图像/序列)。又比如 Transformer 架构在近年来非常流行,它适合处理语言等序列数据。选择怎样的架构,取决于要解决的问题类型,以及算法需要的结构支撑。

        模型架构包括模型的输入层、隐藏层和输出层。输入层负责接收外部数据,隐藏层负责对数据进行特征提取和抽象,输出层则产生最终结果。隐藏层由多种“器官”式的组件构成,如全连接层、卷积层、循环层、注意力层、正则化层、嵌入层、池化层等,每种层都有特定功能,类似于生物体内不同功能的器官。输入层、隐藏层和输出层的设计、实现和优化方式都可能包括创新的源代码、算法策略和训练方法,因此它们都可能成为知识产权保护的对象。

        在这个架构中,模型的参数就附着在架构的“骨架”上,参数属于模型架构的一部分。参数是模型通过训练学到的值,它包括权重(Weights)和偏置(Biases,它们作为模型内部的“可调节旋钮”,帮助模型做出预测。权重是模型的核心参数,用于表示不同输入特征的重要性,比如一个特征权重越大,意味着它对预测结果的影响越大。偏置是神经网络中的“基础调节器”,作为每个神经元自带的常数项,它能在输入为零时提供基准输出,并通过调整激活阈值让模型灵活适应不同场景。参数越多意味着模型能存储更复杂的语言规律,但也需要更多计算资源。

        4.训练方法

        训练方法指的是如何教会模型的策略和过程。即使有了好的算法和架构,模型也需要通过训练才能从数据中学到知识。训练过程本质上是使用大量训练数据来调整模型内部参数,使其逐渐提高完成任务的表现。

        训练的过程既是在优化模型,也是在检验算法和架构是否合适的阶段。开发者通常会在训练过程中评估模型表现,如查看在验证数据上的准确率,调整训练超参数(例如学习率、训练轮次等),必要时修改模型架构或算法。可以说,训练方法是一套将算法+架构+数据转化为最终智能模型的流程。

        5.文档

        文档是伴随软件产品的说明资料,用于帮助人们理解和使用定制模型。良好的文档能显著提高系统的可用性,让不同受众都清楚如何与定制模型交互或对其进行修改。通常,文档可以分为以下两类:

        开发者文档:面向程序员或开发团队,包含代码注释、架构设计文档、API说明等技术细节。它的作用是帮助开发者理解系统内部工作原理,方便后续调试、优化和二次开发。

        用户文档:面向最终用户或客户,包含用户手册、操作指南、常见问题解答等。它就像产品说明书,指导非技术用户正确使用定制模型的功能。

        6. 用户界面设计(UI Design)

        用户界面设计(UI Design)是指整体设计软件界面的过程,涉及到人机交互的各个方面。它不仅关注界面的功能性,还考虑到界面的美观性、操作的流畅性以及用户的心理感受。UI设计师通过布局排版、颜色搭配、图标和按钮样式、交互反馈等多维度设计,确保软件界面的每一个细节都能有效提升用户体验。

        而图形用户界面(GUI)则是UI设计的具体实现,它是用户与定制模型交互的直观窗口。相比命令运行界面需要输入专业指令,GUI提供可视化的界面,例如窗口、按钮、菜单和图标,用户可以通过点击、拖拽等简单操作来使用系统。

        GUI 的作用在整个系统中相当于桥梁,它连接了用户与模型。一方面,GUI 接受用户输入(如文本提问、上传图片等),传递给后台的源代码和模型;另一方面,它以友好的方式呈现AI的输出结果。

        7. 数据预处理与特征工程

        在将数据投喂给模型之前,我们往往需要先经过数据预处理和特征工程步骤。预处理和特征工程不是模型内部组成部分,而是模型训练与应用过程中的外部支撑模块(外部支撑模块是指辅助模型实现特定功能的组件),它们服务于模型的输入层,经过它们处理,数据才能以正确的形式进入模型,其中包括:

        数据预处理:它包括清洗和规范原始数据,例如处理缺失值、去除噪声、标准化数值范围、文本分词等。预处理确保数据质量和格式适合输入层要求,经过预处理的输入会被转换成模型可以接受的形式(比如数值向量),然后送入模型的输入层。

        特征工程:这是利用专业知识从原始数据中提取有信息量的特征或变量的过程。例如,从日期提取出“星期几”作为特征,或从一段文字中提取关键词频率等。

        8. 接口系统

当模型训练完成并投入使用后,还需要通过接口系统与外部世界交互。接口系统是外部支撑模块的一部分,为用户和其他应用提供与模型交互的途径,其中包括:

        输入接口:接口系统会提供输入通道,让用户能够将新数据送入模型。

        输出接口:接口系统也负责输出模型的预测结果或动作反馈,比如返回识别出的图像标签,或者生成回答回复用户。

        包装与部署:接口系统往往包括将模型封装成易于调用的服务。这层“外壳”不仅保护了模型内部的复杂性不暴露给用户,还确保模型能在不同环境中稳定运行。

三、AI定制模型知识产权保护路径

        基于上述定制模型组成部分介绍,本文以下部分,法研社将分别从著作权保护路径、专利权保护路径及商业秘密保护路径出发,分别探讨定制模型的不同组成部分在不同知识产权保护路径下的权利保护范围、优劣对比及适用指引相关事宜。

(一)著作权保护路径

        1.著作权保护路径下的定制模型保护范围

        根据现行著作权法,著作权保护的对象通常是具有独创性的表达形式。一般而言,定制模型的源代码、文档和图形用户界面等创作性内容是可以享有著作权的。例如,小米公司对其“基于大模型的知识问答系统”进行了软件著作权登记。著作权保护可以防止未经授权的复制、传播、修改及衍生作品的制作,从而保护开发者的创作成果。

        需要注意的是,因为AI模型中的参数是海量数据训练与算法优化的技术产物,本质上是数学表征的统计拟合,而非人类智力成果的直接表达,所以在大模型训练过程中获得的参数较难作为作品获得保护。而AI模型的训练过程、算法原理等逻辑规则,其被视为“思想”或“概念”,并不直接属于著作权法保护的范畴。

        2. 著作权保护路径的优劣分析

        著作权保护路径的优势包括:1)可以通过著作权自动获得保护,而不需要进行复杂的注册或审查程序,开发者只要完成了代码的创作或设计,就自然享有著作权。2)与专利权的保护期通常只有20年不同,著作权的保护期较长,其保护期为创作人的一生加上50年。3)著作权与商业秘密可以兼容并行,例如,企业可以在与员工签订保密协议的同时,也为其软件作品申请著作权登记,该等情况下,即使源代码被泄露,企业也可以利用著作权法律手段追究侵权者的法律责任。

        著作权保护仅限于“表达”而非“思想”或“方法”。这意味着,虽然开发者的源代码可以获得保护,但不能保护其中使用的核心算法,其他开发者若基于相同的技术理论、算法或框架重新实现相似的模型,不构成著作权侵权。因此,著作权的保护范围相对较窄,无法完全阻止竞争对手开发类似技术。此外,虽然著作权能够为定制模型提供保护,但这种保护可能会导致技术的封闭。许多AI技术的进步依赖于开源和共享,如果过度依赖著作权保护,可能会限制技术的传播和创新。

        3. 著作权保护路径的适用要点

        由于著作权自动获得的法律属性,企业拟采用著作权保护定制模型权益的,在权利取得环节无需履行任何手续。但仍需关注以下适用要点:

        (1)注意开源协议的影响:定制模型涉及的著作权将会受到基座大模型(基座大模型是指通过大规模数据预训练形成的通用基础AI模型,是定制模型的基础)开源协议著作权条款的影响,就此,本文将在第四部分模型定制合同重点条款之法律分析及建议中进行详细介绍。

        (2)明确约定著作权归属:根据《著作权法》第十九条规定:“受委托创作的作品,著作权的归属由委托人和受托人通过合同约定。合同未作明确约定或者没有订立合同的,著作权属于受托人。”基于此,模型定制合同签署各方应明确约定定制模型的著作权归属,以免误解,导致产生不必要的纠纷。

(二)专利权保护路径

        1. 专利权保护路径下的定制模型保护范围

        专利权是一种法律赋予发明创造者的独占权,使得其在一定期限内能够排除他人未经许可使用该发明创造。对于定制模型而言,专利权主要涉及模型的创新算法、模型架构、训练方法等技术细节。通过专利权保护,企业可以防止他人复制其技术,并在市场上保持竞争优势。

        我国 《专利审查指南(2023)》规定:“涉及人工智能、互联网+、大数据以及区块链等的发明专利申请,一般包含算法或商业规则和方法等智力活动的规则和方法特征,…”“审查应当针对要求保护的解决方案,即权利要求所限定的解决方案进行。在审查中,不应当简单割裂技术特征与算法特征或商业规则和方法特征等,而应将权利要求记载的所有内容作为一个整体,对其中涉及的技术手段、解决的技术问题和获得的技术效果进行分析”。“如果权利要求涉及抽象的算法或者单纯的商业规则和方法,且不包含任何技术特征,则这项权利要求属于专利法第二十五条第一款第(二)项规定的智力活动的规则和方法,不应当被授予专利权。”“如果要求保护的权利要求作为一个整体不属于专利法第二十五条第一款第(二)项排除获得专利权的情形,则需要就其是否属于专利法第二条第二款所述的技术方案进行审查。”

        根据我国 《专利审查指南(2023)》规定中记载的审查示例可知,当定制模型的权利要求整体呈现出以技术特征为主导,切实能够解决技术领域中的特定问题,由此产生实在的、可衡量的技术效果时,才属于可授予专利权的发明。具体判定规则包括:

        (1)属于专利法第二十五条第一款第(二)项范围之内的包含算法特征或商业规则和方法特征的发明专利申请,不属于专利保护的客体。例如,一种建立数学模型的方法,该解决方案不涉及任何具体的应用领域,其中处理的训练样本的特征值、提取特征值、标签值、目标分类模型以及目标特征提取模型都是抽象的通用数据,利用训练样本的相关数据对数学模型进行训练等处理过程是一系列抽象的数学方法步骤,最后得到的结果也是抽象的通用分类数学模型。该方案是一种抽象的模型建立方法,其处理对象、过程和结果都不涉及与具体应用领域的结合,属于对抽象数学方法的优化,且整个方案并不包括任何技术特征,该发明专利申请的解决方案属于专利法第二十五条第一款第(二)项规定的智力活动的规则和方法,不属于专利保护客体。

        (2)为了解决技术问题而利用技术手段并获得技术效果的包含算法特征或商业规则和方法特征的发明专利申请,属于专利法第二条第二款规定的技术方案,因而属于专利保护的客体。例如,一种卷积神经网络CNN模型的训练方法,其中明确了模型训练方法的各步骤中处理的数据均为图像数据以及各步骤如何处理图像数据,体现出神经网络训练算法与图像信息处理密切相关。该解决方案所解决的是如何克服CNN模型仅能识别具有固定尺寸的图像的技术问题,采用了在不同卷积层上对图像进行不同处理并训练的手段,利用的是遵循自然规律的技术手段,获得了训练好的CNN模型能够识别任意尺寸待识别图像的技术效果,因此,该发明专利申请的解决方案属于专利法第二条第二款规定的技术方案,属于专利保护客体。

        (3)未解决技术问题,或者未利用技术手段,或者未获得技术效果的包含算法特征或商业规则和方法特征的发明专利申请,不属于专利法第二条第二款规定的技术方案,因而不属于专利保护的客体。例如,谷歌在中国申请了其开发的Transformer模型架构的专利,被以方案要解决的问题是神经网络本身的问题,而非技术问题为由而驳回。

        (4)在进行创造性审查时,应当考虑与技术特征在功能上彼此相互支持、存在相互作用关系的算法特征或商业规则和方法特征对技术方案作出的贡献。例如,一种用于适配神经网络参数的方法,通过将权重参数的尺寸填充为等于目标尺寸,当支持神经网络的硬件对神经网络的数据进行运算时,硬件能够高效处理所述数据,该解决方案中的算法提升了硬件的运算效率。因此,上述用于适配神经网络参数的算法特征与技术特征在功能上彼此相互支持、存在相互作用关系。上述通过适配神经网络参数以提升硬件运算效率的内容未被其他对比文件公开,也不属于本领域的公知常识,现有技术整体上并不存在对对比文件进行改进以获得发明专利申请的技术方案的启示,要求保护的发明技术方案具备创造性。

        2. 专利权保护路径的优劣分析

        专利权提供了明确的法律框架,一旦获得专利,企业可以依靠法律途径有效地打击侵权行为。专利权的存在促进了技术的进一步创新。通过公开专利技术,其他研究人员和公司能够基于该技术进行二次创新,推动技术的进步。专利权可以保护技术创新,而著作权并不能有效地保护定制模型的核心算法和架构设计。虽然著作权可以保护模型的源代码、文档和数据集,但它对模型的创新性、算法的独占性保护较弱。

        与著作权和商业秘密不同,专利技术是公开的,任何人都可以查阅。这可能导致技术泄露,尤其是在技术创新步伐较快的行业中,专利的公开可能使竞争对手迅速找到绕过专利的方法,或根据专利公开的信息开发出类似技术。此外,专利申请的过程复杂且费用较高,专利的审查和批准过程可能需要几年时间,且并非所有技术都能够顺利通过专利审查。

        3. 专利权保护路径的适用要点

        企业拟采用专利权路径保护定制模型权益的,需关注以下适用要点:

        (1)专利权保护应突出训练方法或应用场景:与其尝试将整个模型架构本身申请专利,不如将关注点放在模型的训练方法上。比如,如果发明了一种全新的训练方法,其大幅提高模型效果,或者定制模型首次应用于某个技术领域解决了难题,这些往往比模型架构本身更具有专利价值。一方面,训练方法和应用方案更容易被认定为有技术贡献,获得专利授权的概率更高;另一方面,这些专利也更能覆盖实际应用,形成有效保护。

        (2)注意开源技术及开源协议的影响:在选择专利保护路径之前,先评估模型中哪些部分是基于开源代码,开源的部分无法申请专利,因为一旦技术细节已经通过开源公开,那么就不再“新颖”,无法申请专利;同时,若定制模型创新建立在开源之上,要在申请专利时清楚区分哪些部分是新增创新点。

        此外,定制模型的专利权也将会受到基座大模型开源协议专利权条款的影响,就此,本文将第四部分模型定制合同重点条款之法律分析及建议中进行详细介绍。

        (3)防御性专利策略:针对定制模型,还有一种平衡开源与专利的方法叫“防御性专利”。通俗地说,防御性专利不是为了起诉他人而申请,相反,它是为了防止他人起诉或者阻止他人将企业的技术据为己有而申请。例如,企业可以将其定制模型的核心创新申请专利,但承诺对业界开放许可或者仅在自身受到侵权指控时才动用专利权。该等情况下,企业享有相应专利权,竞争对手就很难再申请相同的专利来反过来限制企业发展;同时,企业也不能滥用专利去打击使用相关技术的开发者。对于注重开源合作的AI企业来说,防御性专利能够保护自身创新不被“偷袭”,又维持技术开放共享的初衷,是一种值得考虑的策略。

(三)商业秘密保护路径

        1. 商业秘密保护路径下的定制模型保护范围

        商业秘密是指不为公众所知晓、具有商业价值并且经权利人采取保密措施的技术/经营信息。因此,尚不为公众知晓的具有商业价值的内容,理论上只要做好保密措施,就能以商业秘密进行保护。对于定制模型而言,其定制过程中产生的参数、训练方法、用于训练的数据等如不为公众所知晓、具有商业价值,并经权利人采取了保密措施,均可作为商业秘密保护。

        需要注意的是,商业秘密的保护具有相对性,即商业秘密仅能排除他人未经授权的获取和使用己方技术秘密的行为,不能禁止他人就相同的技术主题开展独立研发。

        2. 商业秘密保护路径的优劣分析

        商业秘密保护路径的优势包括:1)无需公开技术细节。企业可以在保密的情况下持续使用该等技术,而不必担心专利权保护情形下的竞争对手通过专利申请或者公开信息来复制或绕过其技术风险。2)商业秘密可以在没有时间限制的情况下持续保护,只要企业能够维持其保密性。企业可以长期享有技术的独占使用权,直至技术不再具有竞争力或被泄露。3)与专利申请所需的时间和费用不同,商业秘密的保护并不依赖于法律程序,因此没有额外的申请费用。企业只需要通过内部管理、技术防护、员工保密协议等措施来确保技术信息不被泄露。

        商业秘密保护路径的最大风险在于其保密性,若一旦发生技术泄露,企业就无法再享有对该技术的独占权,相比之下,专利和著作权在技术公开后仍能提供法律上的保护。此外,商业秘密保护也不能阻止他人独立开发出类似技术,即便企业拥有某项商业秘密,但如果竞争对手通过不同的途径独立发现并开发出相同的技术,企业就无法基于商业秘密主张权利。

        3. 商业秘密保护路径的适用要点

        企业拟采用商业秘密路径保护定制模型权益的,需关注以下适用要点

        (1)何时适用商业秘密:当模型包含独家数据或特别调优的参数,并且企业决定不对外公开相应技术细节时,该等信息就可以作为商业秘密保护。例如,某公司使用其多年积累的独有数据和独特的训练技巧,训练出一套性能远超竞争对手算法模型,若该公司不公布模型的源代码和参数,只通过云端服务让客户调用,那么模型内部细节对外就是保密信息,这种信息因为能带来竞争优势且经严格保密,符合商业秘密的保护条件。相反,如果模型已经公开发表论文详述技术细节或上线开源,那么就不再是商业秘密,无法用商业秘密路径进行保护。

        (2)商业秘密保护面临的风险:商业秘密保护虽然无需政府审批,但最大的挑战是防止泄露。一旦机密泄露,法律保护将大打折扣,因为秘密一旦变成公开知识,就不再受到商业秘密保护相关法律的约束,企业将失去对该技术独享的优势。

        此外,定制模型还存在被“反向工程”的风险:如果企业把模型提供给用户使用(哪怕只是接口调用),可能存在竞争对手通过不停询问模型并观察输出,逐步推测出模型的部分机理或重新训练出性能相近模型的风险。例如,2023年Meta公司研发的AI模型LLaMA曾只提供给研究人员闭源使用,但发布后不到一周模型权重就被泄露到公开网络上,这说明即使没有公开源码,只要竞争对手拿到成品模型,还是有可能被不当传播出去。

四、模型定制合同重点条款之法律分析及建议

        基于前述分析,法研社结合相关实践经验,就各相关方签署模型定制合同所涉重点条款提出相关法律分析及建议,以尽可能合理分配并保护签约各方合法权益。具体如下:

)明确定制模型的权利性质和权利归属

        如前文所述,定制模型主要涉及著作权、专利权、商业秘密三种权利保护路径,每种权利保护路径的保护范围和方式不同,定制模型中不同部分,可能需要通过不同的一种或多种权利组合的方式进行保护。例如源代码和文档可以采用著作权+商业秘密的方式,算法和训练方法采用专利权+商业秘密的方式,界面设计运用著作权+专利权的方式等。这种全方位的保护体系能够确保定制模型相关的权利和权益得到完整覆盖。既可以防止他人不正当获取或抄袭模型成果,又赋予权利人在市场竞争中的法律优势。

        据此,法研社建议合同签署方根据定制模型的具体情况,协商选择适合的一种或多种组合权利保护方式进行明确约定。不同权利保护路径的适用范围及权利归属条款,具体如下:

        1.著作权

        (1)适用范围:定制模型中新增的源代码、文档、用户界面设计等创作性成果等,均可约定通过著作权进行保护。

        (2)著作权归属:根据《著作权法》相关规定,各相关方可通过合同明确约定定制模型中创作性内容的著作权归属。

        2.专利权

        (1)适用范围:若定制模型中包含了创新的算法、模型架构、训练方法等技术,并且具备新颖性、创造性和实用性,均可约定通过专利权进行保护。

        (2)专利权归属:根据《专利法》的相关规定,各相关方可通过合同明确约定定制模型中的技术创新(如新算法、新模型架构)的专利权归属。

        3.商业秘密

        (1)适用范围:定制模型中任何具有商业价值且不为公众所知的信息,如算法、模型架构、训练数据等,均可约定通过商业秘密进行保护。

        (2)保密信息归属:各相关方可通过合同明确约定定制模型中的保密信息归属及保密义务人的义务,包括但不限于:

        保密条款:明确所有技术、数据和信息在合作过程中是否构成商业秘密,并约定双方在合作期间及之后的保密义务。特别是对于定制模型的核心技术、训练数据集等,必须确保这些信息不会泄露。

        商业秘密的使用与披露:明确商业秘密只能用于合同规定的目的,并且在未经许可的情况下,任何一方不得将商业秘密披露给第三方。

        商业秘密的保护期限:合同中应规定商业秘密的保密期限,例如,约定商业秘密在保持秘密状态下持续有效。

)授权条款

        无论定制模型采用何种权利保护路径(包括:著作权、专利权及/或商业秘密保护权及其组合),权利人均可通过授权条款规定定制模型的授权使用范围、许可条件、支付条款等内容,明确被授权人使用定制模型的权利范围及使用方式,保障权利人的合法权利及权益。

        1. 授权类型        

        独占授权:权利人将定制模型的使用权授予被授权人,在指定的期限和区域内独占使用该模型,在独授权范围内,权利人不能自行使用,亦不能向其他方授予相同的使用权。通常,这种授权方式需要较高的授权费用。

        非独占授权:权利人可以将定制模型的使用权授予多方,授权费用通常较低。非独占授权适用于需要在多个领域或市场中推广技术的情况。

        合同中应明确授权类型,约定许可费的支付方式和授权期限。如果是非独占授权,还需在合同中规定是否有排他性条款、是否可以转授权等。

        2. 授权地域与领域

        地域授权:权利人与被授权人可以根据市场需求和法律环境,约定授权的地域范围,例如仅限于某个国家或地区,或是全球授权。

        领域授权:授权条款中应明确是否限制定制模型仅在特定的行业或领域中使用,例如仅限医疗、金融或教育等行业使用。

        3. 授权期限

        固定期限授权:可以约定授权的有效期,并设定续期条款。通常,定制模型的授权期限会根据技术的更新速度来灵活设定。

        长期授权:在某些情况下,被授权人可以获得长期或永久授权,特别是当定制模型的核心技术对被授权人长期战略至关重要时。

        4. 修改与衍生成果

        修改权:合同应明确是否允许被授权人对定制模型进行修改、定制或二次开发。若允许修改,需约定修改后的作品的权利归属及权益分配。

        衍生成果:若定制模型开发过程中产生衍生成果的,权利人与被授权人应规定衍生成果的权利归属以及权益分配。

)遵守相关开源协议

        定制模型一般是基于开源的基座大模型进一步开发产生的,因此定制模型通常被视为原开源模型的衍生品。企业在使用开源模型开发定制模型的同时需履行相应的开源协议项下义务,否则可能需承担著作权侵权、开源协议违约等法律风险。

        开源并不意味着权利人完全放弃了其所享有的权利。一般而言,开源大模型在发布的同时都随附有开源协议,其会对开源大模型的使用者提出一系列要求。因此,模型定制合同中首先应明确基座大模型开源协议的具体要求,合理安排各方的开发和使用权限,确保各方理解并遵守开源协议相关规定。本文以下将介绍各类开源协议关于其衍生品是否允许开源的相关规定,具体包括:

        1.基座大模型使用强传染性协议

        强传染性协议是开源协议中约束最严格的一类,其核心特征在于要求任何使用或修改协议代码的衍生作品必须使用相同协议并且开源,从而确保代码的开放性和共享性。

        无锡中院曾在一起案件中认定,原告的软件因为使用了一个基于强传染性协议的插件,导致整个软件都被强传染性协议“传染”,必须开放源代码。换言之,公司如果在其定制模型中嵌入了适用强传染性协议的基座大模型,就不能对整套软件主张完全的封闭版权,必须遵守其开源要求。

        因此,在定制模型时,应尽量避免使用采用强传染性协议的开源大模型,以保证企业的知识产权和商业利益不受到不必要的限制。若是使用了这种模型,开发方和委托方应清楚理解强传染性协议的要求,确保在使用过程中不违反协议规定。

        2. 基座大模型使用混合型协议

        混合型协议介于宽松与强传染性之间,部分条款对开源范围进行了要求,同时允许一定程度的闭源。在使用由这种协议授权的基座大模型时,后续必须公开的部分仅限于受协议约束的特定代码,而对于新增的部分则允许采取闭源措施。定制模型可以在协议允许的范围内进行闭源或商业化。衍生作品不需要完全公开源代码,对于非强制公开的部分,开发者可以选择是否将其作为专有技术使用。

        基于上述,法研社建议,选择采用混合型开源协议的大模型作为基座大模型的,模型定制合同中应明确划分定制模型的开源部分和专有部分,以及专有部分是否采用闭源的方式,以确保专有部分不受开源协议限制。

        3. 基座大模型使用宽松型协议

        宽松型协议允许使用者自由使用、修改、分发代码,对衍生作品的限制极少,不强制要求衍生作品开源,商业友好性高。对于选择采用宽松型开源协议(如Apache 2.0协议)的大模型作为基座大模型的,相关方依据模型定制合同约定将定制后的模型用于商业化,并自由约定是否将修改后的模型进行闭源,但是各方需要确保依据开源协议要求保留版权声明(如需)。

结语

        基于开源大模型的定制服务为企业与AI技术的深度融合带来了广阔的应用前景,但同时也伴随复杂的知识产权法律挑战。企业在利用开源大模型进行定制服务时,应持续关注相关法律法规的更新变化,并及时调整相应的知识产权保护策略。各方应在合作过程中保持积极的沟通与协作,明确各自的权利义务,防止纠纷的产生。本文期望通过系统分析与权衡利弊,为企业在大模型的定制提供切实有效的法律指引,促进AI技术创新生态的可持续发展。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值