- 博客(10)
- 收藏
- 关注
原创 带你走进OpenAI:人工智能革命的引领者
Whisper是一个端到端的语音转文字模型,采用编码器-解码器Transformer架构,使用了超大规模、有监督的语音数据训练,支持多语言转录和翻译,经过训练,可以预测相应的文本字幕,并与特殊标记混合,引导单个模型执行语言识别、短语级时间戳、多语言语音转录以及英语语音翻译等任务。接受文本、音频、图像和视频的任意组合作为输入,并生成文本、音频和图像的任意组合输出,跨文本、视觉和音频进行端到端训练,所有输入和输出都由同一个神经网络处理,最快可在232毫秒内响应音频输入,平均为320毫秒,与人类的响应时间相似。
2025-05-16 11:32:41
603
原创 AI深度合成时代,法律如何打假?——深度解析AI深度合成技术法律红线
此外,在2024年广州互联网法院审理的“AI换脸肖像权纠纷案”中,首次将“碎片化生物特征重组”纳入肖像权保护范畴,认为肖像权保护不限于面部特征,身体形态、装饰装束等组合亦可构成可识别形象,认为被告未经原告同意,擅自利用AI技术制作“换脸”视频,对视频内容中的人脸等生物特征进行生成或编辑从而达到人脸替换的效果,供用户付费后使用自己的照片进行面部替换,构成对原告肖像权的侵害,判决被告须向张某赔礼道歉,赔偿经济损失。上述案件中争议焦点的讨论及判定,将对训练数据是否构成侵权的边界提供进一步的参考。
2025-05-05 11:14:52
1106
原创 一文了解人工智能的发展历程
摘要:本文系统回顾人工智能的发展历程。从麦卡洛克和皮茨提出人工神经元模型,到1956年达特茅斯会议正式命名“人工智能”;再到符号主义与专家系统兴起,以及连接主义神经网络的兴衰;随后在2010年,深度学习因算力增强和数据规模扩大而引领AI全面复兴,突破语言、视觉和博弈领域。近年来,以Transformer架构为基础的大模型如GPT系列崛起,推动语言理解和多模态AI的发展。此外,自监督学习、自动机器学习(AutoML)和人工通用智能(AGI)的探索标志AI正逐步向更高效、更智能、更通用的方向演进。关键词:人工智
2025-04-26 22:07:12
1167
原创 数据标注:模型训练方与数据标注服务商的权责边界探析
经法研社查询,“北大法宝”案例库中收录的与“数据标注”合同有关的诉讼案件共22件,其中,案由为“服务合同纠纷案件”20件,“承揽合同纠纷案件”1件,“技术服务合同纠纷案件”1件。数据标注是指通过人工操作或使用自动化技术机制,基于对提示信息的响应信息内容,将特定信息如标签、类别或属性添加到文本、图片、音频、视频或者其他数据样本,并生成满足机器学习训练要求的机器可读数据编码的过程,是提升人工智能算法、模型核心能力的关键环节,数据标注活动的准确与否直接影响到模型的理解和泛化能力。
2025-04-24 00:12:55
610
原创 “骚扰电话”-AI外呼技术服务中的合规底线
本文探讨了AI外呼技术的合规问题,通过分析当前AI外呼技术的应用,指出了其合法使用与滥用之间的界限,强调了技术服务提供方应承担的合规责任。文章详细介绍了如何通过个人信息使用合规、内容合规及通信合规三个方面来降低风险,同时强调技术服务提供方和服务使用方在合规过程中的共同责任。文中还提供了具体的合规建议,旨在帮助企业避免法律风险、提高业务合规性。
2025-04-21 23:20:19
1045
原创 以“美摄诉抖音”案为例,探析AI企业软件著作权与技术秘密合规路径
在人工智能(AI)产业快速发展的背景下,技术秘密与计算机软件著作权日益成为AI企业核心竞争力的重要组成部分。近年来,因算法模型、源代码被抄袭带来的法律纠纷,引发社会对AI企业知识产权保护合规体系的广泛关注。本文以“美摄诉抖音”案为分析对象,详解法院在软件著作权与技术秘密侵权认定中的判断路径,结合相关法律规定与司法裁判思路,提出AI企业从技术边界划定、制度建设到侵权预防的合规建议,以期为企业构建健全的知识产权合规体系提供借鉴。
2025-04-16 10:59:42
886
原创 AI定制模型的知识产权保护路径与适用策略研究
近年来,开源大模型的出现为企业定制模型提供了基础,但这一过程在法律上涉及复杂的知识产权问题。本文从多个不同法律角度,分析基于开源大模型定制生成的AI定制模型的知识产权保护路径,探讨如何平衡各方利益,设计合理的模型定制合同条款,以保护开发方和委托方的合法权益,为企业在开源AI领域的商业实践提供法律指导。
2025-04-10 15:41:18
737
原创 人工智能大模型的开源许可协议研究——从技术中立到价值约束
随着人工智能大模型的快速发展,开源模式在推动技术创新的同时,也面临知识产权、伦理风险与合规治理等新挑战。本文系统梳理了大模型领域的开源许可协议体系,从通用开源软件许可协议、知识共享许可协议到专为大模型设计的协议,分析其特点与适用场景。新型协议在保持开放共享的同时,增加了对伦理、安全与使用场景的限制条款。文章为开发者和企业提供了协议选择与合规风险管理的实践指南,以促进大模型开源生态的健康发展。
2025-04-07 14:08:26
736
原创 训练数据爬取的民事法律风险与合规路径探讨——基于知识产权、个人信息保护与反不正当竞争视角
随着人工智能技术的快速发展,数据爬取作为获取训练素材的核心手段,其合法性边界与责任认定问题日益凸显。结合司法实践与立法动态,系统分析数据爬取在知识产权侵权、个人信息泄露及不正当竞争中的法律风险,以典型案例为切入点,提出多维度合规路径。数据爬取行为的合法性需综合考量数据类型、技术手段及商业影响,此外需分析采购数据自用与转售场景下的法律责任差异。通过数据来源合规化、技术隔离与法律协议设计,有效降低侵权风险,推动数据要素的合法流通与技术创新平衡发展。
2025-03-31 17:05:53
1389
原创 AI训练数据权属及合规使用问题之实践探讨
本文以人工智能大模型为背景,从现有法律框架出发,探讨AI模型训练数据的权属及合规使用问题。文章首先分析了我国数据权属的法律现状,包括基础性法律的原则框架,"数据二十条"等政策指引,以及各地方立法开展的探索。其次,文章重点从市场主体获取数据的不同方式出发,分析了自有数据、授权数据和公域数据三类数据的权属分配问题,厘清了数据来源者、数据采集经营者和数据加工使用者等不同主体的权利边界。针对各类数据,文章提出了合规使用建议,包括数据分类管理、使用范围限制、技术防护措施等。
2025-03-28 15:13:08
1208
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人