40.组合总和II
class Solution {
private:
vector<int> path;
vector<vector<int>> result;
void backtracking(vector<int>& candidates,int target,int Sum,int startIndex,vector<bool>& used){
if(Sum==target){
result.push_back(path);
return;
}
for(int i=startIndex;i<candidates.size()&&Sum+candidates[i]<=target;i++){
if(i>0&&candidates[i]==candidates[i-1]&&used[i-1]==false) continue;
path.push_back(candidates[i]);
used[i]=true;
backtracking(candidates,target,Sum+candidates[i],i+1,used);
path.pop_back();
used[i]=false;
}
return;
}
public:
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
if(candidates.size()==0) return result;
sort(candidates.begin(),candidates.end());
vector<bool> used(candidates.size(),false);
backtracking(candidates,target,0,0,used);
return result;
}
};
这道题和之前不一样的是元素可重复使用,且返回结果里不能有重复,这就涉及到去重,去重逻辑是树枝去重和树层去重,采用的方法就是在递归循环里面引入bool数组used,去重的条件是i>0且candidaes[i]==candidates[i-1]且used[i-1]==0,这个条件成立则说明元素重复且在同一树层里面candidates[i]已经使用过了,树层重复必须要跳过,而树枝重复可以重复使用,进入递归前,used[i]要为true,即表示已使用进入树枝,递归返回后回溯,used[i]要重新变为false,因为进入数层,false表示已使用