279.完全平方数
class Solution {
public:
int numSquares(int n) {
vector<int> dp(n+1,n);
dp[0]=0;
for(int i=0;i<n;i++){
for(int j=i*i;j<=n;j++){
dp[j]=min(dp[j],dp[j-i*i]+1);
}
}
return dp[n];
}
};
这道题和零钱兑换那道题的思路可以说是一模一样的,背包的容量为n,物品的重量为i^2,价值为1,所以递推公式为dp[j]=min(dp[j],dp[j-i^2]+1),初始化为dp[0]=0,其余元素为n,因为dp[j]不存在无解的情况,最大就为n
139.单词拆分
class Solution {
public:
bool wordBreak(string s, vector<string>& wordDict) {
unordered_set<string> wordset(wordDict.begin(),wordDict.end());
vector<bool> dp(s.size()+1,false);
dp[0]=true;
for(int j=0;j<=s.size();j++){
for(int i=0;i<=j;i++){
string word=s.substr(i,j-i);
if(wordset.find(word)!=wordset.end()&&dp[i]==true){
dp[j]=true;
}
}
}
return dp[s.size()];
}
这道题,严格意义上不算背包问题,dp[j]的含义为长度为j的字符串是否能拆分为字典里的单词,这道题就是排列问题,所以先遍历背包容量,再遍历物品数量,物品的重量就是应该截取的字符串,如果截取之前dp[i]为true ,说明截取正确,推出dp[j]=true
198.打家劫舍
class Solution {
public:
int rob(vector<int>& nums) {
if(nums.size()==0) return 0;
if(nums.size()==1) return nums[0];
vector<int> dp(nums.size(),0);
dp[0]=nums[0];
dp[1]=max(nums[0],nums[1]);
for(int i=2;i<nums.size();i++){
dp[i]=max(dp[i-1],dp[i-2]+nums[i]);
}
return dp[nums.size()-1];
}
};
dp[i]的含义为到下标i的房屋,最多可以盗窃的金额,递推公式为dp[i]=max(dp[i-1],dp[i-2]+nums[i]),所以要初始化dp[0]和dp[1],dp[0]=nums[0],因为只能盗窃那一个房屋,dp[1]=max(nums[0],nums[1]),两个房屋盗窃最多的那个,注意要提前判断nums数组的长度,防止内存溢出
213.打家劫舍II
class Solution {
private:
int treasure(vector<int>& nums,int start,int end){
vector<int> dp(nums.size(),0);
dp[start]=nums[start];
dp[start+1]=max(nums[start],nums[start+1]);
for(int i=start+2;i<end;i++){
dp[i]=max(dp[i-1],dp[i-2]+nums[i]);
}
return dp[end-1];
}
public:
int rob(vector<int>& nums) {
if(nums.size()==1) return nums[0];
if(nums.size()==2) return max(nums[0],nums[1]);
return max(treasure(nums,0,nums.size()-1),treasure(nums,1,nums.size()));
}
};
这道题完全可以套用上一题打家劫舍1的代码,题目表述房屋首位相连,所以房屋首位不能同时取,只能是首取和尾取两种状态,所以环形数组就能转换成线性数组,把传入的房屋数组截取成两种数组,下标分别为[0,nums.size()-1),和nums[1,nums.size())