leedcode:1155.掷骰子等于目标和的方法数

 题目:

这里有 n 个一样的骰子,每个骰子上都有 k 个面,分别标号为 1 到 k 。

给定三个整数 n ,  k 和 target ,返回可能的方式(从总共 kn 种方式中)滚动骰子的数量,使正面朝上的数字之和等于 target 。

答案可能很大,你需要对 109 + 7 取模 。

一、动态规划

1、思路

动态规划有「选或不选」和「枚举选哪个」这两种基本思考方式。在做题时,可根据题目要求,选择适合题目的一种来思考。本题用到的是「枚举选哪个」。

(1)dp[i][j]:表示用i个骰子且数字之和为j的方案数

(2)转移方程:枚举最后一个骰子,满足:

dp[i][j]=dp[i-1][j-1]+dp[i-1][j-2]+\cdots +dp[i-1][j-k]

注意:j-k>=0

(3)初始化:i=1时,数字之和为1~k的方案数都是1,即,dp[1][1]=dp[0][0]=1;dp[1][2]=dp[0][1]+dp[0][0]=1,dp[1][3]=dp[0][2]+dp[0][1]++dp[0][0],则初始化dp[0][0]=1即可。

2、代码

class Solution {
public:
    int numRollsToTarget(int n, int k, int target) {
        vector<vector<int>> dp(n+1,vector<int>(target+1,0));
        dp[0][0]=1;
        for(int i=1;i<=n;i++){
            for(int j=1;j<=target;j++){
                for(int x=1;x<=k;x++){
                    if(j-x>=0){
                        dp[i][j]=(dp[i][j]+dp[i-1][j-x])%mod;
                    }
                }
            }
        }
        return dp[n][target];
    }
private:
    static constexpr int mod=1e9+7;
};

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值